A variant of a theorem of C. Voisin

J. Nagel

0 Introduction

Let S be a smooth projective surface defined over \mathbb{C}, and let $A_{0}(S)$ be the group of zero cycles of degree zero on S modulo rational equivalence. The n-fold symmetric product $S^{(n)}$ parametrises effective zero-cycles of degree n on S. One says that $A_{0}(S)$ is finite dimensional if there exists $n_{0} \in \mathbb{N}$ such that the map

$$
f_{n, n}: S^{(n)} \times S^{(n)} \rightarrow A_{0}(S)
$$

defined by $f_{n, n}(A, B)=[A-B]$ is surjective for all $n \geq n_{0}$. Mumford $[\mathrm{Mu}]$ proved that $A_{0}(S)$ is not finite dimensional if $p_{g}(S)>0$. Let $C \subset S$ be a smooth curve, and let $i: C \rightarrow S$ be the inclusion morphism. If the induced map $i_{*}: A_{0}(C) \rightarrow A_{0}(S)$ is surjective, then $A_{0}(S)$ is finite dimensional and $A_{0}(S) \cong \operatorname{Alb}(S)$; see [R1, Thm. 4]. Hence if the map i_{*} is surjective, its kernel coincides with the kernel of the map $J(C) \rightarrow \operatorname{Alb}(S)$, which is the the subtorus

$$
J(C)_{\mathrm{var}}=H_{\mathrm{var}}^{1}(C, \mathbb{C}) / F^{1} H_{\mathrm{var}}^{1}(C, \mathbb{C})+H_{\mathrm{var}}^{1}(C, \mathbb{Z})
$$

associated to $H_{\text {var }}^{1}(C)=\operatorname{ker}\left(i_{*}: H^{1}(C) \rightarrow H^{3}(S)\right)$.
Voisin has studied the kernel of i_{*} for smooth surfaces $S \subset \mathbb{P}^{3}$ of degree d. In this case one has $\operatorname{Alb}(S)=0$, hence $\operatorname{Tors}\left(A_{0}(S)\right)=0$ by Roitman's theorem [R2]. It follows that $\operatorname{Tors}\left(A_{0}(C)\right) \subseteq \operatorname{ker} i_{*}$. Voisin showed that equality holds if S is a very general surface of degree $d \geq 5$ and $C \subset S$ is a smooth plane section; see [V1, Thm. 2.1].

Let us consider curves that are obtained by intersecting the surface $S \subset \mathbb{P}^{3}$ with a smooth surface $Y \subset \mathbb{P}^{3}$ of degree $e>1$. Set

$$
\begin{aligned}
& \mathrm{CH}^{1}(Y)_{0}=\left\{z \in \mathrm{CH}^{1}(Y)_{\mathbb{Q}} \mid \operatorname{deg}\left(\left.z\right|_{C}\right)=0\right\} \\
& \mathrm{CH}^{2}\left(\mathbb{P}^{3}\right)_{0}=\left\{z \in \mathrm{CH}^{2}\left(\mathbb{P}^{3}\right)_{\mathbb{Q}} \mid \operatorname{deg}\left(\left.z\right|_{S}\right)=0\right\}
\end{aligned}
$$

and note that the second group is zero. Let $j: C \rightarrow S$ be the inclusion morphism. The commutative diagram

shows that $j^{*} \mathrm{CH}^{1}(Y)_{0} \subseteq \operatorname{ker}\left(i_{*}: A_{0}(C)_{\mathbb{Q}} \rightarrow A_{0}(S)_{\mathbb{Q}}\right)$. As the map j^{*} : $\mathrm{CH}^{1}(Y)_{0} \rightarrow A_{0}(C)_{\mathbb{Q}}$ is injective if C is very general and if the degree d is sufficiently large (Proposition 1.9), we may have ker $i_{*} \supsetneqq \operatorname{Tors}\left(A_{0}(C)\right.$) in this case (For instance, let $Y \subset \mathbb{P}^{3}$ be a smooth quadric and let $\xi=L_{1}-L_{2} \in$ $\mathrm{CH}^{1}(Y)_{0}$ the difference of two lines from the different rulings.)

The purpose of this note is to extend Voisin's theorem to the case of hypersurface sections; we show that the kernel of $i_{*}: A_{0}(C)_{\mathbb{Q}} \rightarrow A_{0}(S)_{\mathbb{Q}}$ equals $j^{*} \mathrm{CH}^{1}(Y)_{0}$ if S is very general and $d=\operatorname{deg} S$ is sufficiently large with respect to $e=\operatorname{deg} Y$. (It is possible to obtain precise degree bounds; see Remark 2.2 (ii).) More generally we consider surfaces S defined by global sections of an ample line bundle L on a smooth projective threefold W and curves $C \subset S$ obtained by intersecting S with an ample divisor $Y \subset W$. We show that there is a certain subgroup $\mathrm{CH}^{1}(Y)_{\text {var }} \subseteq \mathrm{CH}^{1}(Y)_{0}$ such that ker $i_{*} \subseteq j^{*} \mathrm{CH}^{1}(Y)_{\text {var }}$ if L is sufficiently ample; see Theorem 2.1. The inclusion $\operatorname{ker} i_{*} \subseteq j^{*} \mathrm{CH}^{1}(Y)_{\text {var }}$ is an equality if W is a Fano threefold, but probably not in general; see Remark 2.2 (i).

In her paper Voisin uses an infinitesimal invariant δZ associated to a relative zero cycle $Z_{T} \in \mathrm{CH}_{0}\left(S_{T} / T\right)$. In our case it is more convenient to use a connectivity theorem for two families U_{T}, V_{T} of quasi-projective varieties over T, following the ideas of Nori [N]. Both methods are essentially equivalent (cf. the footnotes in [V1] on pages 79 and 85). We prove the connectivity theorem, and some other technical results, in Section 1. In Section 2 we prove the proposed variant of Voisin's theorem.

Voisin's theorem has been extended in a different direction (the case of higher-dimensional varieties) by M. Asakura and S. Saito [AS]. The problem considered in this note was suggested to me by Prof. J.P. Murre. I would like to thank Professors Murre and Peters for comments and useful discussions.

Notation and conventions. For an abelian group G we write $G_{\mathbb{Q}}=G \otimes \mathbb{Q}$. Cohomology is taken with \mathbb{C}-coefficients, unless stated otherwise. We say that a property (P) holds for a very general element of a topological space X if the set of elements of X that do not satisfy property (P) is a countable union of proper closed subsets. We say that a property (P) holds for sufficiently ample line bundles if there exists a line bundle L_{0} such that property (P) holds for all line bundles L such that $L \otimes L_{0}^{-1}$ is ample.

1 Connectivity theorem

Let W be a smooth projective threefold, $Y \subset W$ a smooth ample divisor and L an ample line bundle on W such that $H^{0}(W, L) \neq 0$. For $t \in H^{0}(W, L)$ we write $S_{t}=V(t), C_{t}=Y \cap S_{t}$. Set

$$
\begin{aligned}
G & =\{g \in \operatorname{Aut}(W) \mid g . Y \subset Y\} \\
\Delta & =\left\{[t] \in \mathbb{P} H^{0}(W, L) \mid C_{t} \text { is singular }\right\} \\
B & =\left(\mathbb{P} H^{0}(W, L) \backslash \Delta\right) / G .
\end{aligned}
$$

Set $W_{B}=W \times B, Y_{B}=Y \times B$. Let $S_{B} \rightarrow B$ be the universal family of surfaces in W defined by sections of L and set $C_{B}=S_{B} \cap Y_{B}$. Let $h: T \rightarrow B$ be a finite étale morphism. Set $U_{T}=W_{T} \backslash Y_{T}, V_{T}=S_{T} \backslash C_{T}$.

Lemma 1.1. If L is sufficiently ample then
(i) $H^{k}\left(W_{T}, S_{T}\right)=0$ for $k \leq 4$;
(ii) $H^{k}\left(Y_{T}, C_{T}\right)=0$ for $k \leq 2$.

Proof: This follows from results of Nori [N], more specfically a version of [N, Thm. 4] that can obtained from Prop. 3.1 and Lemmas 2.1 and 2.2 of [loc. cit.].

Corollary 1.2. If L is sufficiently ample then $H^{k}\left(U_{T}, V_{T}\right)=0$ for $k \leq 3$.
Proof: Use Lemma 1.1 and the exact sequence

$$
H^{k}\left(W_{T}, S_{T}\right) \rightarrow H^{k}\left(U_{T}, V_{T}\right) \rightarrow H^{k-1}\left(Y_{T}, C_{T}\right) .
$$

In Section 2 we shall also need the vanishing of $H^{4}\left(U_{T}, V_{T}\right)$. By Lemma 1.1, this group injects into $H^{3}\left(Y_{T}, C_{T}\right)$. As the latter group is nonzero even if L is sufficiently ample (cf. [$\mathrm{N}, \mathrm{p} .352$]), the vanishing of $H^{4}\left(U_{T}, V_{T}\right)$ does not follow from Nori's results; we shall prove it in this section, using the techniques of [N] and infinitesimal computations. The divisor $D_{T}=S_{T} \cup Y_{T}$ is a divisor with relative normal crossings. Following [DI, (4.2.1.2)] we define

$$
\begin{gathered}
\Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)=\Omega_{W_{T}}^{\bullet}\left(\log D_{T}\right)\left(-S_{T}\right) \\
\Omega_{W_{T}}^{\bullet}\left(Y_{T}, S_{T}\right)=\Omega_{W_{T}}^{\bullet}\left(\log D_{T}\right)\left(-Y_{T}\right) .
\end{gathered}
$$

Using the exact sequence

$$
0 \rightarrow \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right) \rightarrow \Omega_{W_{T}}^{\bullet}\left(\log Y_{T}\right) \rightarrow \Omega_{S_{T}}^{\bullet}\left(\log C_{T}\right) \rightarrow 0
$$

and the five lemma, one shows that

$$
H^{k}\left(U_{T}, V_{T}\right) \cong \mathbb{H}^{k}\left(\Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right)
$$

Lemma 1.3. If $\mathbb{H}^{4}\left(\sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right)=0$ then $H^{4}\left(U_{T}, V_{T}\right)=0$.
Proof: Define a filtration G^{\bullet} on $H^{4}\left(U_{T}, V_{T}\right)$ by

$$
G^{p} H^{4}\left(U_{T}, V_{T}\right)=\operatorname{im}\left(\mathbb { H } ^ { 4 } \left(\sigma_{\geq p} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right) \rightarrow \mathbb{H}^{4}\left(\Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right)\right.\right.
$$

As in $[\mathrm{N}, \S 1]$ one shows that G^{\bullet} is coarser than the Hodge filtration F^{\bullet} on $H^{4}\left(U_{T}, V_{T}\right)$. We obtain $F^{2} H^{4}\left(U_{T}, V_{T}\right)=0$, hence $H^{4}\left(U_{T}, V_{T}\right)=0$ because $\operatorname{Gr}_{i}^{W} H^{k}\left(U_{T}, V_{T}\right)=0$ if $i<4$.

Let $f: W_{T} \rightarrow T$ be the projection map. Set

$$
\mathcal{H}_{U, V}^{k}=\mathbb{R}^{k} f_{*} \Omega_{W_{T} / T}^{\bullet}\left(S_{T}, Y_{T}\right)
$$

The sheaf $\mathcal{H}_{U, V}^{k}$ is filtered by subsheaves $\mathcal{F}^{m} \mathcal{H}_{U, V}^{k}$, with graded pieces $\mathcal{H}_{U, V}^{p, q}$. Using [DI, Cor. 4.2.4] and [D, Thm. (5.5)] one shows that the sheaves $\mathcal{H}_{U, V}^{k}$ and $\mathcal{H}_{U, V}^{p, q}$ are locally free and that $\mathcal{H}_{U, V}^{p, q} \otimes k(t) \cong H^{q}\left(W, \Omega_{W}^{p}\left(S_{t}, Y\right)\right)$ for all $t \in T$. The de Rham complex $\Omega^{\bullet}\left(\mathcal{H}_{U, V}^{k}\right)$ is filtered by subcomplexes

$$
\Omega^{\bullet}\left(\mathcal{F}^{m} \mathcal{H}_{U, V}^{k}\right): \mathcal{F}^{m} \mathcal{H}_{U, V}^{k} \xrightarrow{\nabla} \Omega_{T}^{1} \otimes \mathcal{F}^{m-1} \mathcal{H}_{U, V}^{k} \rightarrow \cdots
$$

for every $m \in \mathbb{N}$.

Lemma 1.4. We have
(i) $H^{k}\left(U, V_{t}\right)=0$ if $k \leq 2$;
(ii) if $Y \subset W$ is an ample divisor then $H^{k}\left(U, V_{t}\right)=0$ if $k \neq 3$.

Proof: (i): As $S_{t} \subset W$ is an ample divisor, $W \backslash S_{t}$ is an affine variety of dimension 3. Hence it has the homotopy type of a CW complex of dimension $\leq 3(\mathrm{cf} .[\mathrm{Mi}, \S 7])$ and $H^{k}\left(W, S_{t}\right) \cong H_{6-k}\left(W \backslash S_{t}\right)=0$ if $k<3$. In a similar way one shows that $H^{k}\left(Y, C_{t}\right)=0$ if $k<2$, and the statement follows from the exact sequence $H^{k}\left(W, S_{t}\right) \rightarrow H^{k}\left(U, V_{t}\right) \rightarrow H^{k-1}\left(Y, C_{t}\right)$.
(ii): If $Y \subset W$ is ample, $U=Y \backslash W$ and $V_{t}=S_{t} \backslash C_{t}$ are affine varieties, hence [loc. cit.] $H^{k}(U)=0$ if $k>3$ and $H^{k}\left(V_{t}\right)=0$ if $k>2$. The statement then follows from the exact sequence of relative cohomology.

Let $\Sigma_{W, L}$ be the bundle of differential operators of order ≤ 1 on sections of L. If we pull back the extension

$$
0 \rightarrow \mathcal{O}_{W} \rightarrow \Sigma_{W, L} \rightarrow T_{W} \rightarrow 0
$$

along the map $T_{W}(-\log Y) \rightarrow T_{W}$, we obtain an extension

$$
0 \rightarrow \mathcal{O}_{W} \rightarrow \Sigma_{W, L}(-\log Y) \rightarrow T_{W}(-\log Y) \rightarrow 0
$$

Contraction with the 1 -jet $j^{1}(t)$ of $t \in H^{0}(W, L)$ defines an exact sequence

$$
\begin{equation*}
0 \rightarrow T_{W}\left(-\log D_{t}\right) \rightarrow \Sigma_{W, L}(-\log Y) \rightarrow L \rightarrow 0 \tag{1}
\end{equation*}
$$

We construct a Jacobi ring R^{\prime} using the method of Green [G1]. Define $J_{W, t}^{\prime}\left(K_{W}^{a} \otimes L^{b}\right)$, for $(a, b) \neq(1,1)$, as the image of the map

$$
H^{0}\left(W, K_{W}^{a} \otimes \Sigma_{W, L}(-\log Y) \otimes L^{b-1}\right) \rightarrow H^{0}\left(W, K_{W}^{a} \otimes L^{b}\right)
$$

induced by the exact sequence (1). We put $J_{W, t}^{\prime}\left(K_{W} \otimes L\right)=0$ and

$$
R_{W, t}^{\prime}\left(K_{W}^{a} \otimes L^{b}\right)=H^{0}\left(W, K_{W}^{a} \otimes L^{b}\right) / J_{W, t}^{\prime}\left(K_{W}^{a} \otimes L^{b}\right)
$$

As in [G2, p. 43] one shows that

$$
H^{p}\left(W, \Omega_{W}^{3-p}\left(Y, S_{t}\right)\right) \cong R_{W, t}^{\prime}\left(K_{W} \otimes L^{p+1}\right)
$$

if L is sufficiently ample. The exact sequence (1) induces a logarithmic Kodaira-Spencer map

$$
\rho: A=H^{0}(W, L) \rightarrow H^{1}\left(W, T_{W}\left(-\log D_{t}\right)\right)
$$

Lemma 1.5. Set $A=H^{0}(W, L)$. If L is sufficiently ample, the complex

$$
\begin{equation*}
0 \rightarrow \mathcal{H}_{U, V}^{b, 3-b} \rightarrow A^{\vee} \otimes \mathcal{H}_{U, V}^{b-1,4-b} \rightarrow \bigwedge^{2} A^{\vee} \otimes \mathcal{H}_{U, V}^{b-2,5-b} \tag{2}
\end{equation*}
$$

is exact for $b \geq 2$.
Proof: We shall verify the exactness of

$$
0 \rightarrow \mathcal{H}_{U, V}^{2,1} \stackrel{\bar{\nabla}}{\longrightarrow} A^{\vee} \otimes \mathcal{H}_{U, V}^{1,2} \stackrel{\bar{\nabla}}{\longrightarrow} \bigwedge^{2} A^{\vee} \otimes \mathcal{H}_{U, V}^{0,3},
$$

the other cases being similar. It suffices to show that for every $t \in A$ the complex of fibers over t is exact. Using the duality induced by the perfect pairing

$$
H^{p}\left(W, \Omega_{W}^{3-p}\left(S_{t}, Y\right)\right) \otimes H^{3-p}\left(W, \Omega_{W}^{p}\left(Y, S_{t}\right)\right) \rightarrow H^{3}\left(W, K_{W}\right) \cong \mathbb{C}
$$

we reduce to proving the exactness of the complex

$$
\begin{equation*}
\bigwedge^{2} A \otimes H^{0}\left(\Omega_{W}^{3}\left(Y, S_{t}\right)\right) \rightarrow A \otimes H^{1}\left(\Omega_{W}^{2}\left(Y, S_{t}\right)\right) \rightarrow H^{2}\left(\Omega_{W}^{1}\left(Y, S_{t}\right)\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

The maps in the complex (3) are given by cup product with the logarithmic Kodaira-Spencer class, followed by contraction. As the logarithmic Kodaira-Spencer class corresponds to the extension class e of the exact sequence (1) and the isomorphism $H^{p}\left(W, \Omega_{W}^{3-p}\left(Y, S_{t}\right)\right) \cong R_{W, t}^{\prime}\left(K_{W} \otimes L^{p+1}\right)$ is given by repeated cup product with e, it follows that we can identify the complex (3) with the complex

$$
\bigwedge^{2} A \otimes R^{\prime}\left(K_{W} \otimes L\right) \rightarrow A \otimes R^{\prime}\left(K_{W} \otimes L^{2}\right) \rightarrow R^{\prime}\left(K_{W} \otimes L^{3}\right) \rightarrow 0
$$

The latter complex is exact if
(i) The complex

$$
\bigwedge^{2} A \otimes H^{0}\left(W, K_{W} \otimes L\right) \rightarrow A \otimes H^{0}\left(W, K_{W} \otimes L^{2}\right) \rightarrow H^{0}\left(W, K_{W} \otimes L^{3}\right) \rightarrow 0
$$

is exact;
(ii) The map $A \otimes J_{W, t}^{\prime}\left(K_{W} \otimes L^{2}\right) \rightarrow J_{W, t}^{\prime}\left(K_{W} \otimes L^{3}\right)$ is surjective.

The first statement follows from [G1, Lemma 2.47]. For the second statement we consider the commutative diagram

$$
\begin{aligned}
& A \otimes H^{0}\left(K_{W} \otimes \Sigma_{W, L}(-\log Y) \otimes L\right) \quad \xrightarrow{\mu} \quad H^{0}\left(K_{W} \otimes \Sigma_{W, L}(-\log Y) \otimes L^{2}\right)
\end{aligned}
$$

By [G1, Lemma 1.28] the map μ is surjective if L is sufficiently ample, hence ν is surjective because the vertical arrows are surjective by definition.

Corollary 1.6. If L is sufficiently ample then
(i) $R^{a} f_{*} \Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right)=0$ if $a+b \leq 4$ and $b \geq 2$;
(ii) $R^{a} f_{*} \Omega_{W_{T}}^{b}\left(S_{T}, Y_{T}\right)=0$ if $a+b \leq 4$ and $b \geq 2$.

Proof: (i): Let L^{\bullet} be the Leray filtration on $\Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right)$. Consider the spectral sequence

$$
E_{1}^{p, q}=R^{p+q} f_{*} \operatorname{Gr}_{L}^{p} \Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right) \Rightarrow R^{p+q} f_{*} \Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right) .
$$

We have $E_{1}^{p, q-b} \cong \bigwedge^{p} A^{\vee} \otimes \mathcal{H}_{U, V}^{b-p, p+q-b}$. The complex (2) can be identified with $E_{1}^{\bullet, 3-b}$. By Lemma 1.4 we have $E_{1}^{p, q-b}=0$ if $q \neq 3$, hence

$$
\begin{aligned}
R^{k-b} f_{*} \Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right) & =0 \text { if } k \leq 2 \\
R^{3-b} f_{*} \Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right) & \cong E_{2}^{0,3-b} \\
R^{4-b} f_{*} \Omega_{W_{A}}^{b}\left(S_{A}, Y_{A}\right) & \cong E_{2}^{1,3-b}
\end{aligned}
$$

and the assertion follows from Lemma 1.5.
(ii): Consider the chain of morphisms

$$
T \xrightarrow{f_{1}} B \stackrel{g_{1}}{\longrightarrow} \mathbb{P} H^{0}(W, L) \backslash \Delta \xrightarrow{f_{2}} \mathbb{P} H^{0}(W, L) \stackrel{g_{2}}{ } H^{0}(W, L) \backslash\{0\} \xrightarrow{f_{3}} A .
$$

As f_{1}, f_{2}, f_{3} are smooth and g_{1}, g_{2} are smooth and surjective, the assertion follows from (i) using [N, Lemma 2.2].

Theorem 1.7. If $Y \subset W$ is an ample divisor and if L is sufficiently ample, then $H_{\mathcal{D}}^{4}\left(U_{T}, V_{T}, \mathbb{Q}(2)\right)=0$.

Proof: We have an exact sequence

$$
H^{3}\left(U_{T}, V_{T}\right) \rightarrow H_{\mathcal{D}}^{4}\left(U_{T}, V_{T}, \mathbb{Q}(2)\right) \rightarrow H^{4}\left(U_{T}, V_{T}\right) \oplus \mathbb{H}^{4}\left(\sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right)
$$

By Corollary 1.2 and Lemma 1.3 it suffices to show that

$$
\begin{equation*}
\mathbb{H}^{4}\left(\sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right)=0 \tag{4}
\end{equation*}
$$

To this end, we use the Grothendieck spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(T, \mathbb{R}^{q} f_{*} \sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right) \Rightarrow \mathbb{H}^{p+q}\left(\sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)\right) .
$$

To verify the assertion (4) it suffices to show that

$$
\mathbb{R}^{q} f_{*} \sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)=0 \quad \text { if } q \leq 4
$$

This assertion follows from Corollary 1.6 using the spectral sequence

$$
E_{1}^{a, b}=R^{a} f_{*} \sigma_{\geq 2} \Omega_{W_{T}}^{b}\left(S_{T}, Y_{T}\right) \Rightarrow \mathbb{R}^{a+b} f_{*} \sigma_{\geq 2} \Omega_{W_{T}}^{\bullet}\left(S_{T}, Y_{T}\right)
$$

Lemma 1.8. If $Z_{T} \in \mathrm{CH}_{0}\left(S_{T} / T\right)$ is a relative zero cycle such that $Z(t)$ is rationally equivalent to zero for all $t \in T_{\mathbb{C}}$, then there exists a Zariski open subset $U \subset T$ such that the Deligne cycle class $\mathrm{cl}_{\mathcal{D}}\left(Z_{U}\right) \in H_{\mathcal{D}}^{4}\left(S_{U}, \mathbb{Q}(2)\right)$ is zero.

Proof: We use the methods of Bloch's proof of Mumford's theorem [B]. We may assume that T is irreducible. Let η be the generic point of T and let K be the function field of T. Choose an embedding of K in \mathbb{C}. The generic point η defines closed points η_{K} and $\eta_{\mathbb{C}}$ of T_{K} and $T_{\mathbb{C}}$. By assumption we have $\left[Z\left(\eta_{K}\right)\right] \in \operatorname{ker}\left(\mathrm{CH}^{2}\left(S_{K}\right) \rightarrow \mathrm{CH}^{2}\left(S_{\mathbb{C}}\right)\right)$. The kernel of this map is a torsion group [loc.cit., Lemma 3], hence there exists $N \in \mathbb{N}$ such that $N\left[Z\left(\eta_{K}\right)\right]=0$ in $\mathrm{CH}^{2}\left(S_{K}\right)$. As

$$
\mathrm{CH}^{2}\left(S_{K}\right)=\lim _{V \subset \vec{T} \text { open }} \mathrm{CH}^{2}\left(S_{V}\right)
$$

there exists a Zariski open subset $U \subset T$ such that $N\left[Z_{U}\right]=0$ in $\mathrm{CH}^{2}\left(S_{U}\right)$, hence $\operatorname{cl}_{\mathcal{D}}\left(Z_{U}\right)=0$ in $H_{\mathcal{D}}^{4}\left(S_{U}, \mathbb{Q}(2)\right)$.

Define $\mathrm{CH}^{1}(Y)_{0}=\left\{z \in \mathrm{CH}^{1}(Y)_{\mathbb{Q}} \mid \operatorname{deg}\left(\left.z\right|_{C}\right)=0\right\}$.
Proposition 1.9. If $t \in T$ is very general and L is sufficiently ample, the restriction map $j_{t}^{*}: \mathrm{CH}^{1}(Y)_{0} \rightarrow A_{0}\left(C_{t}\right)_{\mathbb{Q}}$ is injective.
Proof: Set $\operatorname{Hdg}_{\mathrm{pr}}^{1}(Y)_{\mathbb{Q}}=H_{\mathrm{pr}}^{1,1}(Y) \cap H^{2}(Y, \mathbb{Q})$. We have an exact sequence

$$
0 \rightarrow \operatorname{Pic}^{0}(Y)_{\mathbb{Q}} \rightarrow \mathrm{CH}^{1}(Y)_{0} \rightarrow \operatorname{Hdg}_{\mathrm{pr}}^{1}(Y)_{\mathbb{Q}} \rightarrow 0
$$

Using the Lefschetz hyperplane theorem one shows that the restriction map $\operatorname{Pic}^{0}(Y) \rightarrow A_{0}\left(C_{t}\right)$ is injective, hence the kernel of $j_{t}^{*}: \mathrm{CH}^{1}(Y)_{0} \rightarrow A_{0}\left(C_{t}\right)$ coincides with the kernel of the map

$$
\psi: \operatorname{Hdg}_{\mathrm{pr}}^{1}(Y)_{\mathbb{Q}} \rightarrow J\left(C_{t}\right)_{\mathrm{var}} \otimes \mathbb{Q} \cong A_{0}\left(C_{t}\right) / \operatorname{Pic}^{0}(Y) \otimes \mathbb{Q}
$$

obtained by lifing a primitive Hodge class to $\mathrm{CH}^{1}(Y)_{0}$ and restricting to C_{t}. Let $U^{\prime} \subset \mathbb{P} H^{0}\left(Y,\left.L\right|_{Y}\right)$ be the complement of the discriminant locus. Set $B^{\prime}=$ $U^{\prime} / \operatorname{Aut}(Y)$ and let \mathcal{J} be the Jacobian fibration associated to the universal family $f: C_{B^{\prime}} \rightarrow B^{\prime}$. Let $\nu_{\xi} \in H^{0}\left(B^{\prime}, \mathcal{J}\right)$ be the normal function associated to ξ and let $\mathbb{V}=\left(R^{1} f_{*} \mathbb{Q}\right)_{\text {var }}$ be the local system of variable cohomology. As in [K, Lemme 6.4.2] one shows that $\mathbb{V} \neq 0$ if L is sufficiently ample. We study the normal function ν_{ξ} by a technique due to Griffiths: using restriction to a Lefschetz pencil and results of N. Katz [loc. cit., Thms. 5.8.4 and 6.3] and Zucker [Z, Prop. 3.9] one shows that the map $\partial: \operatorname{Hdg}_{\mathrm{pr}}^{1}(Y)_{\mathbb{Q}} \rightarrow H^{1}\left(U^{\prime}, \mathbb{V}\right)$ that associates to a normal function its cohomological invariant is injective if L is sufficiently ample, hence $\nu_{\xi} \in H^{0}(T, \mathcal{J})$ is not torsion if $\mathrm{cl}_{Y}(\xi) \in$ $\operatorname{Hdg}_{\mathrm{pr}}^{1}(Y)_{\mathbb{Q}}$ is nonzero. There is a natural restriction map $r: B \rightarrow B^{\prime}$ which is surjective if L is sufficiently ample. If $g: T \rightarrow B$ is a finite étale morphism, the morphism $h=r \circ g: T \rightarrow B^{\prime}$ is dominant, hence $h^{*} \nu_{\xi}$ is not a torsion section of the induced Jacobian fibration over T. It follows that for very general $t \in T$ the map $\psi: \operatorname{Hdg}_{\mathrm{pr}}^{1}(Y)_{\mathbb{Q}} \rightarrow J\left(C_{t}\right)_{\text {var }} \otimes \mathbb{Q}$ is injective, and the assertion follows.

2 Extension of Voisin's theorem

Let W be a smooth projective threefold and let $Y \subset W$ be a smooth ample divisor. Let L be an ample line bundle on W such that $H^{0}(W, L) \neq 0$ (this condition is satisfied if L is sufficiently ample). For $t \in H^{0}(W, L)$ we define $S_{t}=V(t), C_{t}=Y \cap S_{t}$. Let G be the group of automorphisms of W that preserve Y and define

$$
\Delta=\left\{[t] \in \mathbb{P} H^{0}(W, L) \mid C_{t} \text { is singular }\right\}
$$

Set $B=\left(\mathbb{P} H^{0}(W, L) \backslash \Delta\right) / G, W_{B}=W \times B, Y_{B}=Y \times B$. Let $S_{B} \subset W_{B}$ be the universal family. Set $C_{B}=Y_{B} \cap S_{B}, U_{B}=W_{B} \backslash Y_{B}$ and $V_{B}=S_{B} \backslash C_{B}$.

Let $i_{t}: C_{t} \rightarrow S_{t}$ and $j_{t}: C_{t} \rightarrow Y$ be the inclusion morphisms. Consider the compositions

$$
\begin{array}{r}
f_{1}: \mathrm{CH}^{1}(Y) \xrightarrow{i_{*}} \mathrm{CH}^{2}(W) \xrightarrow{\mathrm{cl}_{\mathcal{D}, W}} H_{\mathcal{D}}^{4}(W, \mathbb{Q}(2)) \\
f_{2}: \mathrm{CH}^{1}(Y) \xrightarrow{j_{t}^{*}} \mathrm{CH}^{1}\left(C_{t}\right) \xrightarrow{c l_{C_{t}}} H^{2}\left(C_{t}, \mathbb{Q}\right)
\end{array}
$$

and define

$$
\mathrm{CH}^{1}(Y)_{\mathrm{var}}=\operatorname{ker} f_{1}, \quad \mathrm{CH}^{1}(Y)_{0}=\operatorname{ker} f_{2} .
$$

Let $g: H_{\mathcal{D}}^{4}(W, \mathbb{Q}(2)) \rightarrow H^{4}\left(S_{t}, \mathbb{Q}\right)$ be the composition of the restriction map $H_{\mathcal{D}}^{4}(W, \mathbb{Q}(2)) \rightarrow H_{\mathcal{D}}^{4}\left(S_{t}, \mathbb{Q}(2)\right)$ and the projection to $H^{4}\left(S_{t}, \mathbb{Q}\right)$. The commutative diagram

shows that $\mathrm{CH}^{1}(Y)_{\text {var }} \subseteq \mathrm{CH}^{1}(Y)_{0}$ (the lower horizontal map is an isomorphism by the Lefschetz hyperplane theorem). Hence $j_{t}^{*} \mathrm{CH}^{1}(Y)_{\mathrm{var}} \subseteq A_{0}\left(C_{t}\right)_{\mathbb{Q}}$.

Theorem 2.1. If $t \in B$ is very general and if L is sufficiently ample, the kernel of the map

$$
\left(i_{t}\right)_{*}: A_{0}\left(C_{t}\right)_{\mathbb{Q}} \rightarrow A_{0}\left(S_{t}\right)_{\mathbb{Q}}
$$

is contained in the image of the map

$$
j_{t}^{*}: \mathrm{CH}^{1}(Y)_{\mathrm{var}} \rightarrow A_{0}\left(C_{t}\right)_{\mathbb{Q}} .
$$

Proof: A standard argument shows that if $b \in B$ is very general and $z_{0} \in$ $\operatorname{ker}\left(i_{b}\right)_{*}$ there exist a finite étale covering $f: T \rightarrow B$, a relative cycle $Z_{T} \in$ $A_{0}\left(C_{T} / T\right)$ such that $Z(t) \in \operatorname{ker}\left(i_{t}\right)_{*}$ for all $t \in T_{\mathbb{C}}$ and a point $t_{0} \in f^{-1}(b)$ such that $Z\left(t_{0}\right)=z_{0}$; cf. [V1, p. 85-86]. By Lemma 1.8 we may assume, after replacing T by a Zariski open subset, that $\mathrm{cl}_{\mathcal{D}}\left(Z_{T}\right)=0$ in $H_{\mathcal{D}}^{4}\left(S_{T}, \mathbb{Q}(2)\right)$. Consider the commutative diagram

As cl $\mathcal{D}_{\mathcal{D}, C_{T}}\left(Z_{T}\right) \in \operatorname{ker} i_{*}$ and $H_{\mathcal{D}}^{4}\left(U_{T}, V_{T}, \mathbb{Q}(2)\right)=0$ by Theorem 1.7, we can lift $\mathrm{cl}_{\mathcal{D}, C_{T}}\left(Z_{T}\right)$ to an element $\tilde{\xi} \in H_{\mathcal{D}}^{3}\left(U_{T}, \mathbb{Q}(2)\right)$. The element $\xi=r(\tilde{\xi})$ belongs to

$$
H_{\mathcal{D}}^{2}\left(Y_{T}, \mathbb{Q}(1)\right)_{\mathrm{var}}=\operatorname{ker}\left(H_{\mathcal{D}}^{2}\left(Y_{T}, \mathbb{Q}(1)\right) \rightarrow H_{\mathcal{D}}^{4}\left(W_{T}, \mathbb{Q}(2)\right)\right) .
$$

Let $a_{t_{0}}: Y \cong Y \times\left\{t_{0}\right\} \rightarrow Y_{T}$ and $b_{t_{0}}: C_{t_{0}} \rightarrow C_{T}$ be the inclusion morphisms. Consider the commutative diagram

Set $\xi_{0}=a_{t_{0}}^{*} \xi \in H_{\mathcal{D}}^{2}(Y, \mathbb{Q}(1))_{\text {var }} \cong \mathrm{CH}^{1}(Y)_{\text {var }}$. By construction we have $j_{t_{0}}^{*} \xi_{0}=\left[Z\left(t_{0}\right)\right]=z_{0} \in A_{0}\left(C_{t_{0}}\right)$, hence $z_{0} \in j_{t_{0}}^{*} \mathrm{CH}^{1}(Y)_{\mathrm{var}}$.

Remark 2.2.

(i) If the Deligne cycle class map on $\mathrm{CH}^{2}(W)_{\mathbb{Q}}$ is injective, it follows that $\mathrm{CH}^{1}(Y)_{\mathrm{var}}=\operatorname{ker}\left(\mathrm{CH}^{1}(Y)_{\mathbb{Q}} \rightarrow \mathrm{CH}^{2}(W)_{\mathbb{Q}}\right)$ and $j_{t}^{*} \mathrm{CH}^{1}(Y)_{\mathrm{var}} \subseteq \operatorname{ker}\left(i_{t}\right)_{*}$ for all $t \in T$, with equality if $t \in B$ is very general. By [BS, Thm. 1 (i)], the Deligne cycle class map is injective if W is a Fano threefold (it is even an isomorphism). In general the Deligne cycle class map on $\mathrm{CH}^{2}(W)_{\mathbb{Q}}$ is not expected to be injective, and the inclusion $j_{t}^{*} \mathrm{CH}^{1}(Y)_{\mathrm{var}} \subseteq \operatorname{ker}\left(i_{t}\right)_{*}$ may fail to hold.
(ii) If $W=\mathbb{P}^{3}, L=\mathcal{O}_{\mathbb{P}}(d)$ and $Y \subset \mathbb{P}^{3}$ is a smooth surface of degree e, regularity computations show that Theorem 2.1 holds if $d \geq \max (5,3 e-3)$.
(iii) It is possible to prove Theorem 1.7 without the assumption that $Y \subset W$ is ample. If $Y \subset W$ is an arbitrary smooth subvariety of codimension one, Lemma 1.4 only gives $\mathcal{H}_{U, V}^{q}=0$ if $q<3$. In this case one has to use more sophisticated techniques to analyse the behaviour of the spectral sequence $E_{r}^{p, q}$ that appears in the proof of Corollary 1.6 (i).

It is possible to generalise Theorem 2.1 to the case of complete intersections (One reduces to the codimension one case by replacing W by a suitable projective bundle P and S_{t} by a global section of the tautological bundle $\left.\mathcal{O}_{P}(1).\right)$ As an example, we mention the following result that generalises Voisin's theorem to the case of complete intersections:
Theorem 2.3. Let $S=V\left(d_{0}, \ldots, d_{r}\right) \subset \mathbb{P}^{r+3}$ be a complete intersection surface and let $H \subset \mathbb{P}^{r+3}$ be a hyperplane. Set $C=S \cap H$. If S is very general, the kernel of $i_{*}: A_{0}(C) \rightarrow A_{0}(S)$ is the torsion subgroup of $A_{0}(C)$ unless
(i) $r=0$ and $d_{0} \leq 4$;
(ii) $r=1$ and $\left(d_{0}, d_{1}\right)=(d, 2), d \geq 2$;
(iii) $r=2$ and $\left(d_{0}, d_{1}, d_{2}\right)=(2,2,2)$.

The degree bounds in this example are sharp. For case (i) this has been shown by Voisin; see [V1, Remarque 2.3]. Case (iii) is treated using the same method. In case (ii) we consider surfaces $S_{\tau}, \tau=(t, u)$, that are complete intersections of a smooth quadric $Q_{t} \subset \mathbb{P}^{4}$ and a hypersurface X_{u} of degree d. Choose $t_{0} \in H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}}(2)\right)$ and set $Y=Q_{t_{0}} \cap H, W=Q_{t_{0}}$. Let $\xi=L_{1}-L_{2}$ be the difference of two lines from different rulings on Y. We have a commutative diagram

As the cycle class map induces an isomorphism $\mathrm{CH}^{2}\left(Q_{t}\right) \cong H^{4}\left(Q_{t}, \mathbb{Z}\right)=\mathbb{Z}$ we have $[\xi] \in \mathrm{CH}^{1}(Y)_{\text {var }}$, hence $[\xi \cap X] \in \operatorname{ker} i_{*}$. Let $U \subset \mathbb{P} H^{0}\left(Y, \mathcal{O}_{Y}(d)\right)$ be the complement of the discriminant locus. If $d \geq 2$ then $H_{\text {var }}^{1}\left(C_{\tau}, \mathbb{Q}\right) \neq 0$, and the proof of Proposition 1.9 shows that the map $\mathrm{CH}^{1}(Y)_{\mathrm{var}} \rightarrow A_{0}\left(C_{\tau}\right)_{\mathbb{Q}}$ is injective if $u \in U$ is very general. Set $E=\mathcal{O}_{\mathbb{P}^{4}}(2) \oplus \mathcal{O}_{\mathbb{P}^{4}}(d)$, and let $\Delta \subset$ $\mathbb{P} H^{0}\left(\mathbb{P}^{4}, E\right)$ be the discriminant locus. Put $G=\{g \in \operatorname{PGL}(5) \mid g(H)=H\}$ and $B=\left(\mathbb{P} H^{0}\left(\mathbb{P}^{4}, E\right) \backslash \Delta\right) / G$. From the previous result and the transitivity of the PGL-action on the space of smooth quadrics one deduces the existence of a countable number of proper Zariski closed subsets $\Sigma_{n} \subset B$ such that if $d \geq 2$ and $\tau=[(t, u)] \notin \cup_{n \in \mathbb{N}} \Sigma_{n}$, the restriction map $j^{*}: \mathrm{CH}^{1}\left(Y_{t}\right)_{\text {var }} \rightarrow$ $A_{0}\left(C_{\tau}\right)_{\mathbb{Q}}$ is injective. It follows that $j^{*} \xi$ is a nonzero element of $\operatorname{ker}\left(i_{\tau}\right)_{*}$.

Remark 2.4. The behaviour of ker i_{*} is related to the problem of finding a criterion for a zero cycle on a smooth surface S to be rationally equivalent to zero. Let $T(S)$ be the kernel of the Albanese map. M. Green [G3] has defined a 'higher Abel-Jacobi map' $\psi_{2}^{2}: T(S) \rightarrow J_{2}^{2}(S)$. Let $C \subset S$ be a smooth curve. The kernel of the map $i_{*}: A_{0}(C) \rightarrow A_{0}(S)$ is contained in the kernel of the composed map $f=\psi_{2}^{2} \circ i_{*}: J(C)_{\mathrm{var}} \rightarrow J_{2}^{2}(S)$. Voisin [V2] has shown that the map ψ_{2}^{2} may fail to be injective (see [BDPR] for another counterexample), hence the inclusion $\operatorname{ker} i_{*} \subseteq \operatorname{ker} f$ can be strict.

References

[AS] M. Asakura and S. Saito, Filtration on Chow groups and higher Abel-Jacobi maps, preprint.
[B] S. Bloch, On an argument of Mumford in the theory of algebraic cycles, in: Journées de géométrie algébrique, Angers 1979, 217-221.
[BS] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Am. J. Math. 105 (1983), 1235-1253.
[BDPR] J. Biswas, G. Dayal, K. Paranjape and V. Ravindra, Higher AbelJacobi maps, preprint, Math. AG/0010029.
[D] P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. IHES 35 (1968), 107-126.
[DI] P. Deligne and L. Illusie, Relèvements modulo p^{2} et décomposition du complexe de de Rham, Inv. Math. 89 (1987), 247-270.
[G1] M. Green, The period map for hypersurface sections of high degree of an arbitrary variety, Comp. Math. 55 (1984), 135-156.
[G2] M. Green, Infinitesimal methods in Hodge theory, in: Algebraic cycles and Hodge theory, Lecture Notes in Mathematics 1594 (1994), 1-92.
[G3] M. Green, Higher Abel-Jacobi maps, Proc. ICM Berlin 1998 vol. II, 267-276.
[K] N. Katz, Etude cohomologique des pinceaux de Lefschetz, Exposé XVIII in: Groupes de Monodromie en Géométrie Algébrique, SGA 7 II, Lecture Notes in Mathematics 340 (1973).
[Mi] J. Milnor, Morse theory, Ann. of Math. Studies 51, Princeton University Press (1963).
[Mu] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (2) (1969), 195-204.
[N] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Inv. Math. 111 (1993), 349-373.
[R1] A.A. Roitman, Rational equivalence of zero-cycles, Math. USSR Sbornik 18 (1972), 571-588.
[R2] A.A. Roitman, The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math. 111 (1980), 553-569.
[V1] C. Voisin, Variations de structures de Hodge et zéro-cycles sur les surfaces générales, Math. Ann. 299 (1994), 77-103.
[V2] C. Voisin, Some results on Green's higher Abel-Jacobi map, Annals of Math. 149 (1999), 451-473.
[Z] S. Zucker, Generalized intermediate Jacobians and the theorem on normal functions, Inv. Math. 33 (1976), 185-222.

Université Lille 1, Mathématiques - Bât. M2, F-59655 Villeneuve d'Ascq Cedex, France
email: nagel@agat.univ-lille1.fr

