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0 Introduction

Let S be a smooth projective surface defined over C, and let A0(S) be the
group of zero cycles of degree zero on S modulo rational equivalence. The
n–fold symmetric product S(n) parametrises effective zero–cycles of degree n
on S. One says that A0(S) is finite dimensional if there exists n0 ∈ N such
that the map

fn,n : S(n) × S(n) → A0(S)

defined by fn,n(A,B) = [A − B] is surjective for all n ≥ n0. Mumford [Mu]
proved that A0(S) is not finite dimensional if pg(S) > 0. Let C ⊂ S be a
smooth curve, and let i : C → S be the inclusion morphism. If the induced
map i∗ : A0(C) → A0(S) is surjective, then A0(S) is finite dimensional and
A0(S) ∼= Alb(S); see [R1, Thm. 4]. Hence if the map i∗ is surjective, its
kernel coincides with the kernel of the map J(C) → Alb(S), which is the the
subtorus

J(C)var = H1
var(C,C)/F 1H1

var(C,C) + H1
var(C,Z)

associated to H1
var(C) = ker(i∗ : H1(C) → H3(S)).

Voisin has studied the kernel of i∗ for smooth surfaces S ⊂ P3 of degree
d. In this case one has Alb(S) = 0, hence Tors(A0(S)) = 0 by Roitman’s
theorem [R2]. It follows that Tors(A0(C)) ⊆ ker i∗. Voisin showed that
equality holds if S is a very general surface of degree d ≥ 5 and C ⊂ S is a
smooth plane section; see [V1, Thm. 2.1].

Let us consider curves that are obtained by intersecting the surface S ⊂ P3

with a smooth surface Y ⊂ P3 of degree e > 1. Set

CH1(Y )0 = {z ∈ CH1(Y )Q| deg(z|C) = 0}
CH2(P3)0 = {z ∈ CH2(P3)Q| deg(z|S) = 0}
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and note that the second group is zero. Let j : C → S be the inclusion
morphism. The commutative diagram

CH1(Y )0 −→ CH2(P3)0 = 0yj∗
y

A0(C)Q
i∗−→ A0(S)Q

shows that j∗ CH1(Y )0 ⊆ ker(i∗ : A0(C)Q → A0(S)Q). As the map j∗ :
CH1(Y )0 → A0(C)Q is injective if C is very general and if the degree d is
sufficiently large (Proposition 1.9), we may have ker i∗ % Tors(A0(C)) in this
case (For instance, let Y ⊂ P3 be a smooth quadric and let ξ = L1 − L2 ∈
CH1(Y )0 the difference of two lines from the different rulings.)

The purpose of this note is to extend Voisin’s theorem to the case of
hypersurface sections; we show that the kernel of i∗ : A0(C)Q → A0(S)Q
equals j∗ CH1(Y )0 if S is very general and d = deg S is sufficiently large with
respect to e = deg Y . (It is possible to obtain precise degree bounds; see
Remark 2.2 (ii).) More generally we consider surfaces S defined by global
sections of an ample line bundle L on a smooth projective threefold W and
curves C ⊂ S obtained by intersecting S with an ample divisor Y ⊂ W .
We show that there is a certain subgroup CH1(Y )var ⊆ CH1(Y )0 such that
ker i∗ ⊆ j∗ CH1(Y )var if L is sufficiently ample; see Theorem 2.1. The in-
clusion ker i∗ ⊆ j∗ CH1(Y )var is an equality if W is a Fano threefold, but
probably not in general; see Remark 2.2 (i).

In her paper Voisin uses an infinitesimal invariant δZ associated to a
relative zero cycle ZT ∈ CH0(ST /T ). In our case it is more convenient to use a
connectivity theorem for two families UT , VT of quasi–projective varieties over
T , following the ideas of Nori [N]. Both methods are essentially equivalent
(cf. the footnotes in [V1] on pages 79 and 85). We prove the connectivity
theorem, and some other technical results, in Section 1. In Section 2 we
prove the proposed variant of Voisin’s theorem.

Voisin’s theorem has been extended in a different direction (the case of
higher–dimensional varieties) by M. Asakura and S. Saito [AS]. The problem
considered in this note was suggested to me by Prof. J.P. Murre. I would like
to thank Professors Murre and Peters for comments and useful discussions.
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Notation and conventions. For an abelian group G we write GQ = G⊗Q.
Cohomology is taken with C–coefficients, unless stated otherwise. We say
that a property (P) holds for a very general element of a topological space X
if the set of elements of X that do not satisfy property (P) is a countable union
of proper closed subsets. We say that a property (P) holds for sufficiently
ample line bundles if there exists a line bundle L0 such that property (P)
holds for all line bundles L such that L⊗ L−1

0 is ample.

1 Connectivity theorem

Let W be a smooth projective threefold, Y ⊂ W a smooth ample divisor and
L an ample line bundle on W such that H0(W,L) 6= 0. For t ∈ H0(W,L) we
write St = V (t), Ct = Y ∩ St. Set

G = {g ∈ Aut(W )|g.Y ⊂ Y }
∆ = {[t] ∈ PH0(W,L)|Ct is singular}
B = (PH0(W,L) \∆)/G.

Set WB = W × B, YB = Y × B. Let SB → B be the universal family of
surfaces in W defined by sections of L and set CB = SB ∩YB. Let h : T → B
be a finite étale morphism. Set UT = WT \ YT , VT = ST \ CT .

Lemma 1.1. If L is sufficiently ample then

(i) Hk(WT , ST ) = 0 for k ≤ 4;

(ii) Hk(YT , CT ) = 0 for k ≤ 2.

Proof: This follows from results of Nori [N], more specfically a version of
[N, Thm. 4] that can obtained from Prop. 3.1 and Lemmas 2.1 and 2.2 of
[loc. cit.]. ¤

Corollary 1.2. If L is sufficiently ample then Hk(UT , VT ) = 0 for k ≤ 3.

Proof: Use Lemma 1.1 and the exact sequence

Hk(WT , ST ) → Hk(UT , VT ) → Hk−1(YT , CT ).

¤
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In Section 2 we shall also need the vanishing of H4(UT , VT ). By Lemma
1.1, this group injects into H3(YT , CT ). As the latter group is nonzero even
if L is sufficiently ample (cf. [N, p. 352]), the vanishing of H4(UT , VT ) does
not follow from Nori’s results; we shall prove it in this section, using the
techniques of [N] and infinitesimal computations. The divisor DT = ST ∪ YT

is a divisor with relative normal crossings. Following [DI, (4.2.1.2)] we define

Ω•
WT

(ST , YT ) = Ω•
WT

(log DT )(−ST )

Ω•
WT

(YT , ST ) = Ω•
WT

(log DT )(−YT ).

Using the exact sequence

0 → Ω•
WT

(ST , YT ) → Ω•
WT

(log YT ) → Ω•
ST

(log CT ) → 0

and the five lemma, one shows that

Hk(UT , VT ) ∼= Hk(Ω•
WT

(ST , YT )).

Lemma 1.3. If H4(σ≥2Ω
•
WT

(ST , YT )) = 0 then H4(UT , VT ) = 0.

Proof: Define a filtration G• on H4(UT , VT ) by

GpH4(UT , VT ) = im(H4(σ≥pΩ
•
WT

(ST , YT ) → H4(Ω•
WT

(ST , YT )).

As in [N, §1] one shows that G• is coarser than the Hodge filtration F • on
H4(UT , VT ). We obtain F 2H4(UT , VT ) = 0, hence H4(UT , VT ) = 0 because
GrW

i Hk(UT , VT ) = 0 if i < 4. ¤

Let f : WT → T be the projection map. Set

Hk
U,V = Rkf∗Ω•

WT /T (ST , YT ).

The sheaf Hk
U,V is filtered by subsheaves FmHk

U,V , with graded pieces Hp,q
U,V .

Using [DI, Cor. 4.2.4] and [D, Thm. (5.5)] one shows that the sheaves Hk
U,V

and Hp,q
U,V are locally free and that Hp,q

U,V ⊗ k(t) ∼= Hq(W, Ωp
W (St, Y )) for all

t ∈ T . The de Rham complex Ω•(Hk
U,V ) is filtered by subcomplexes

Ω•(FmHk
U,V ) : FmHk

U,V
∇−→ Ω1

T ⊗Fm−1Hk
U,V → · · ·

for every m ∈ N.
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Lemma 1.4. We have

(i) Hk(U, Vt) = 0 if k ≤ 2;

(ii) if Y ⊂ W is an ample divisor then Hk(U, Vt) = 0 if k 6= 3.

Proof: (i): As St ⊂ W is an ample divisor, W \ St is an affine variety of
dimension 3. Hence it has the homotopy type of a CW complex of dimension
≤ 3 (cf. [Mi, §7]) and Hk(W,St) ∼= H6−k(W \ St) = 0 if k < 3. In a similar
way one shows that Hk(Y, Ct) = 0 if k < 2, and the statement follows from
the exact sequence Hk(W,St) → Hk(U, Vt) → Hk−1(Y,Ct).

(ii): If Y ⊂ W is ample, U = Y \ W and Vt = St \ Ct are affine varieties,
hence [loc. cit.] Hk(U) = 0 if k > 3 and Hk(Vt) = 0 if k > 2. The statement
then follows from the exact sequence of relative cohomology. ¤

Let ΣW,L be the bundle of differential operators of order ≤ 1 on sections
of L. If we pull back the extension

0 → OW → ΣW,L → TW → 0

along the map TW (− log Y ) → TW , we obtain an extension

0 → OW → ΣW,L(− log Y ) → TW (− log Y ) → 0.

Contraction with the 1–jet j1(t) of t ∈ H0(W,L) defines an exact sequence

0 → TW (− log Dt) → ΣW,L(− log Y ) → L → 0. (1)

We construct a Jacobi ring R′ using the method of Green [G1]. Define
J ′W,t(K

a
W ⊗ Lb), for (a, b) 6= (1, 1), as the image of the map

H0(W,Ka
W ⊗ ΣW,L(− log Y )⊗ Lb−1) → H0(W,Ka

W ⊗ Lb)

induced by the exact sequence (1). We put J ′W,t(KW ⊗ L) = 0 and

R′
W,t(K

a
W ⊗ Lb) = H0(W,Ka

W ⊗ Lb)/J ′W,t(K
a
W ⊗ Lb).

As in [G2, p. 43] one shows that

Hp(W, Ω3−p
W (Y, St)) ∼= R′

W,t(KW ⊗ Lp+1)

if L is sufficiently ample. The exact sequence (1) induces a logarithmic
Kodaira–Spencer map

ρ : A = H0(W,L) → H1(W,TW (− log Dt)).
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Lemma 1.5. Set A = H0(W,L). If L is sufficiently ample, the complex

0 → Hb,3−b
U,V → A∨ ⊗Hb−1,4−b

U,V → ∧2A∨ ⊗Hb−2,5−b
U,V (2)

is exact for b ≥ 2.

Proof: We shall verify the exactness of

0 → H2,1
U,V

∇−→ A∨ ⊗H1,2
U,V

∇−→ ∧2A∨ ⊗H0,3
U,V ,

the other cases being similar. It suffices to show that for every t ∈ A the
complex of fibers over t is exact. Using the duality induced by the perfect
pairing

Hp(W, Ω3−p
W (St, Y ))⊗H3−p(W, Ωp

W (Y, St)) → H3(W,KW ) ∼= C
we reduce to proving the exactness of the complex

∧2A⊗H0(Ω3
W (Y, St)) → A⊗H1(Ω2

W (Y, St)) → H2(Ω1
W (Y, St)) → 0. (3)

The maps in the complex (3) are given by cup product with the loga-
rithmic Kodaira–Spencer class, followed by contraction. As the logarithmic
Kodaira–Spencer class corresponds to the extension class e of the exact se-
quence (1) and the isomorphism Hp(W, Ω3−p

W (Y, St)) ∼= R′
W,t(KW ⊗ Lp+1) is

given by repeated cup product with e, it follows that we can identify the
complex (3) with the complex

∧2A⊗R′(KW ⊗ L) → A⊗R′(KW ⊗ L2) → R′(KW ⊗ L3) → 0.

The latter complex is exact if

(i) The complex
∧2A⊗H0(W,KW⊗L) → A⊗H0(W,KW⊗L2) → H0(W,KW⊗L3) → 0

is exact;

(ii) The map A⊗ J ′W,t(KW ⊗ L2) → J ′W,t(KW ⊗ L3) is surjective.

The first statement follows from [G1, Lemma 2.47]. For the second statement
we consider the commutative diagram

A⊗H0(KW ⊗ ΣW,L(− log Y )⊗ L) µ−→ H0(KW ⊗ ΣW,L(− log Y )⊗ L2)y.j1(t)

y.j1(t)

A⊗ J ′W,t(KW ⊗ L2) ν−→ J ′W,t(KW ⊗ L3).

By [G1, Lemma 1.28] the map µ is surjective if L is sufficiently ample, hence
ν is surjective because the vertical arrows are surjective by definition. ¤
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Corollary 1.6. If L is sufficiently ample then

(i) Raf∗Ωb
WA

(SA, YA) = 0 if a + b ≤ 4 and b ≥ 2;

(ii) Raf∗Ωb
WT

(ST , YT ) = 0 if a + b ≤ 4 and b ≥ 2.

Proof: (i): Let L• be the Leray filtration on Ωb
WA

(SA, YA). Consider the

spectral sequence

Ep,q
1 = Rp+qf∗ Grp

L Ωb
WA

(SA, YA) ⇒ Rp+qf∗Ωb
WA

(SA, YA).

We have Ep,q−b
1

∼= ∧pA∨ ⊗ Hb−p,p+q−b
U,V . The complex (2) can be identified

with E•,3−b
1 . By Lemma 1.4 we have Ep,q−b

1 = 0 if q 6= 3, hence

Rk−bf∗Ωb
WA

(SA, YA) = 0 if k ≤ 2

R3−bf∗Ωb
WA

(SA, YA) ∼= E0,3−b
2

R4−bf∗Ωb
WA

(SA, YA) ∼= E1,3−b
2

and the assertion follows from Lemma 1.5.

(ii): Consider the chain of morphisms

T f1−→ B g1←− PH0(W,L) \∆ f2−→ PH0(W,L) g2←− H0(W,L) \ {0} f3−→ A.

As f1, f2, f3 are smooth and g1, g2 are smooth and surjective, the assertion
follows from (i) using [N, Lemma 2.2]. ¤

Theorem 1.7. If Y ⊂ W is an ample divisor and if L is sufficiently ample,
then H4

D(UT , VT ,Q(2)) = 0.

Proof: We have an exact sequence

H3(UT , VT ) → H4
D(UT , VT ,Q(2)) → H4(UT , VT )⊕H4(σ≥2Ω

•
WT

(ST , YT )).

By Corollary 1.2 and Lemma 1.3 it suffices to show that

H4(σ≥2Ω
•
WT

(ST , YT )) = 0. (4)

To this end, we use the Grothendieck spectral sequence

Ep,q
2 = Hp(T,Rqf∗σ≥2Ω

•
WT

(ST , YT )) ⇒ Hp+q(σ≥2Ω
•
WT

(ST , YT )).
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To verify the assertion (4) it suffices to show that

Rqf∗σ≥2Ω
•
WT

(ST , YT ) = 0 if q ≤ 4.

This assertion follows from Corollary 1.6 using the spectral sequence

Ea,b
1 = Raf∗σ≥2Ω

b
WT

(ST , YT ) ⇒ Ra+bf∗σ≥2Ω
•
WT

(ST , YT ).

¤

Lemma 1.8. If ZT ∈ CH0(ST /T ) is a relative zero cycle such that Z(t) is
rationally equivalent to zero for all t ∈ TC, then there exists a Zariski open
subset U ⊂ T such that the Deligne cycle class clD(ZU) ∈ H4

D(SU ,Q(2)) is
zero.

Proof: We use the methods of Bloch’s proof of Mumford’s theorem [B]. We
may assume that T is irreducible. Let η be the generic point of T and let
K be the function field of T . Choose an embedding of K in C. The generic
point η defines closed points ηK and ηC of TK and TC. By assumption we have
[Z(ηK)] ∈ ker(CH2(SK) → CH2(SC)). The kernel of this map is a torsion
group [loc.cit., Lemma 3], hence there exists N ∈ N such that N [Z(ηK)] = 0
in CH2(SK). As

CH2(SK) = lim→
V⊂T open

CH2(SV )

there exists a Zariski open subset U ⊂ T such that N [ZU ] = 0 in CH2(SU),
hence clD(ZU) = 0 in H4

D(SU ,Q(2)). ¤

Define CH1(Y )0 = {z ∈ CH1(Y )Q| deg(z|C) = 0}.
Proposition 1.9. If t ∈ T is very general and L is sufficiently ample, the
restriction map j∗t : CH1(Y )0 → A0(Ct)Q is injective.

Proof: Set Hdg1
pr(Y )Q = H1,1

pr (Y ) ∩H2(Y,Q). We have an exact sequence

0 → Pic0(Y )Q → CH1(Y )0 → Hdg1
pr(Y )Q → 0.

Using the Lefschetz hyperplane theorem one shows that the restriction map
Pic0(Y ) → A0(Ct) is injective, hence the kernel of j∗t : CH1(Y )0 → A0(Ct)
coincides with the kernel of the map

ψ : Hdg1
pr(Y )Q → J(Ct)var ⊗Q ∼= A0(Ct)/ Pic0(Y )⊗Q
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obtained by lifing a primitive Hodge class to CH1(Y )0 and restricting to Ct.
Let U ′ ⊂ PH0(Y, L|Y ) be the complement of the discriminant locus. Set B′ =
U ′/ Aut(Y ) and let J be the Jacobian fibration associated to the universal
family f : CB′ → B′. Let νξ ∈ H0(B′,J ) be the normal function associated
to ξ and let V = (R1f∗Q)var be the local system of variable cohomology. As
in [K, Lemme 6.4.2] one shows that V 6= 0 if L is sufficiently ample. We study
the normal function νξ by a technique due to Griffiths: using restriction to
a Lefschetz pencil and results of N. Katz [loc. cit., Thms. 5.8.4 and 6.3] and
Zucker [Z, Prop. 3.9] one shows that the map ∂ : Hdg1

pr(Y )Q → H1(U ′,V)
that associates to a normal function its cohomological invariant is injective
if L is sufficiently ample, hence νξ ∈ H0(T,J ) is not torsion if clY (ξ) ∈
Hdg1

pr(Y )Q is nonzero. There is a natural restriction map r : B → B′ which
is surjective if L is sufficiently ample. If g : T → B is a finite étale morphism,
the morphism h = r◦g : T → B′ is dominant, hence h∗νξ is not a torsion
section of the induced Jacobian fibration over T . It follows that for very
general t ∈ T the map ψ : Hdg1

pr(Y )Q → J(Ct)var ⊗ Q is injective, and the
assertion follows. ¤

2 Extension of Voisin’s theorem

Let W be a smooth projective threefold and let Y ⊂ W be a smooth ample
divisor. Let L be an ample line bundle on W such that H0(W,L) 6= 0 (this
condition is satisfied if L is sufficiently ample). For t ∈ H0(W,L) we define
St = V (t), Ct = Y ∩ St. Let G be the group of automorphisms of W that
preserve Y and define

∆ = {[t] ∈ PH0(W,L)|Ct is singular}.

Set B = (PH0(W,L) \∆)/G, WB = W ×B, YB = Y ×B. Let SB ⊂ WB be
the universal family. Set CB = YB ∩ SB, UB = WB \ YB and VB = SB \ CB.

Let it : Ct → St and jt : Ct → Y be the inclusion morphisms. Consider
the compositions

f1 : CH1(Y ) i∗−→ CH2(W ) clD,W−−−−→ H4
D(W,Q(2))

f2 : CH1(Y ) j∗t−→ CH1(Ct)
clCt−−→ H2(Ct,Q)
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and define
CH1(Y )var = ker f1, CH1(Y )0 = ker f2.

Let g : H4
D(W,Q(2)) → H4(St,Q) be the composition of the restriction

map H4
D(W,Q(2)) → H4

D(St,Q(2)) and the projection to H4(St,Q). The
commutative diagram

CH1(Y ) f1−→ H4
D(W,Q(2))yf2

yg

H2(Ct,Q) (it)∗−−−→ H4(St,Q)

shows that CH1(Y )var ⊆ CH1(Y )0 (the lower horizontal map is an isomor-
phism by the Lefschetz hyperplane theorem). Hence j∗t CH1(Y )var ⊆ A0(Ct)Q.

Theorem 2.1. If t ∈ B is very general and if L is sufficiently ample, the
kernel of the map

(it)∗ : A0(Ct)Q → A0(St)Q

is contained in the image of the map

j∗t : CH1(Y )var → A0(Ct)Q.

Proof: A standard argument shows that if b ∈ B is very general and z0 ∈
ker(ib)∗ there exist a finite étale covering f : T → B, a relative cycle ZT ∈
A0(CT /T ) such that Z(t) ∈ ker(it)∗ for all t ∈ TC and a point t0 ∈ f−1(b)
such that Z(t0) = z0; cf. [V1, p. 85–86]. By Lemma 1.8 we may assume,
after replacing T by a Zariski open subset, that clD(ZT ) = 0 in H4

D(ST ,Q(2)).
Consider the commutative diagram

H3
D(UT ,Q(2)) −→ H3

D(VT ,Q(2)) −→ H4
D(UT , VT ,Q(2))yr

y
y

H2
D(YT ,Q(1)) k∗−→ H2

D(CT ,Q(1)) −→ H3
D(YT , CT ,Q(1))y

yi∗

y
H4
D(WT ,Q(2)) −→ H4

D(ST ,Q(2)) −→ H5
D(WT , ST ,Q(2)).

As clD,CT
(ZT ) ∈ ker i∗ and H4

D(UT , VT ,Q(2)) = 0 by Theorem 1.7, we can lift
clD,CT

(ZT ) to an element ξ̃ ∈ H3
D(UT ,Q(2)). The element ξ = r(ξ̃) belongs

to
H2
D(YT ,Q(1))var = ker(H2

D(YT ,Q(1)) → H4
D(WT ,Q(2))).
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Let at0 : Y ∼= Y ×{t0} → YT and bt0 : Ct0 → CT be the inclusion morphisms.
Consider the commutative diagram

H2
D(YT ,Q(1))var

k∗−→ H2
D(CT ,Q(1))ya∗t0

yb∗t0

H2
D(Y,Q(1))var

j∗t0−−→ H2
D(Ct0 ,Q(1)).

Set ξ0 = a∗t0ξ ∈ H2
D(Y,Q(1))var

∼= CH1(Y )var. By construction we have
j∗t0ξ0 = [Z(t0)] = z0 ∈ A0(Ct0), hence z0 ∈ j∗t0 CH1(Y )var. ¤

Remark 2.2.

(i) If the Deligne cycle class map on CH2(W )Q is injective, it follows that
CH1(Y )var = ker(CH1(Y )Q → CH2(W )Q) and j∗t CH1(Y )var ⊆ ker(it)∗
for all t ∈ T , with equality if t ∈ B is very general. By [BS, Thm.
1 (i)], the Deligne cycle class map is injective if W is a Fano three-
fold (it is even an isomorphism). In general the Deligne cycle class
map on CH2(W )Q is not expected to be injective, and the inclusion
j∗t CH1(Y )var ⊆ ker(it)∗ may fail to hold.

(ii) If W = P3, L = OP(d) and Y ⊂ P3 is a smooth surface of degree e, regu-
larity computations show that Theorem 2.1 holds if d ≥ max(5, 3e−3).

(iii) It is possible to prove Theorem 1.7 without the assumption that Y ⊂ W
is ample. If Y ⊂ W is an arbitrary smooth subvariety of codimension
one, Lemma 1.4 only gives Hq

U,V = 0 if q < 3. In this case one has
to use more sophisticated techniques to analyse the behaviour of the
spectral sequence Ep,q

r that appears in the proof of Corollary 1.6 (i).

It is possible to generalise Theorem 2.1 to the case of complete intersec-
tions (One reduces to the codimension one case by replacing W by a suitable
projective bundle P and St by a global section of the tautological bundle
OP (1).) As an example, we mention the following result that generalises
Voisin’s theorem to the case of complete intersections:

Theorem 2.3. Let S = V (d0, . . . , dr) ⊂ Pr+3 be a complete intersection
surface and let H ⊂ Pr+3 be a hyperplane. Set C = S ∩ H. If S is very
general, the kernel of i∗ : A0(C) → A0(S) is the torsion subgroup of A0(C)
unless
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(i) r = 0 and d0 ≤ 4;

(ii) r = 1 and (d0, d1) = (d, 2), d ≥ 2;

(iii) r = 2 and (d0, d1, d2) = (2, 2, 2).

The degree bounds in this example are sharp. For case (i) this has been
shown by Voisin; see [V1, Remarque 2.3]. Case (iii) is treated using the
same method. In case (ii) we consider surfaces Sτ , τ = (t, u), that are
complete intersections of a smooth quadric Qt ⊂ P4 and a hypersurface Xu

of degree d. Choose t0 ∈ H0(P4,OP(2)) and set Y = Qt0 ∩H, W = Qt0 . Let
ξ = L1 − L2 be the difference of two lines from different rulings on Y . We
have a commutative diagram

CH1(Y ) −→ CH2(W )y∩Xu

y∩Xu

CH1(Cτ )
i∗−→ CH2(Sτ ).

As the cycle class map induces an isomorphism CH2(Qt) ∼= H4(Qt,Z) = Z
we have [ξ] ∈ CH1(Y )var, hence [ξ ∩X] ∈ ker i∗. Let U ⊂ PH0(Y,OY (d)) be
the complement of the discriminant locus. If d ≥ 2 then H1

var(Cτ ,Q) 6= 0,
and the proof of Proposition 1.9 shows that the map CH1(Y )var → A0(Cτ )Q
is injective if u ∈ U is very general. Set E = OP4(2) ⊕OP4(d), and let ∆ ⊂
PH0(P4, E) be the discriminant locus. Put G = {g ∈ PGL(5)|g(H) = H}
and B = (PH0(P4, E) \∆)/G. From the previous result and the transitivity
of the PGL–action on the space of smooth quadrics one deduces the existence
of a countable number of proper Zariski closed subsets Σn ⊂ B such that
if d ≥ 2 and τ = [(t, u)] /∈ ∪n∈NΣn, the restriction map j∗ : CH1(Yt)var →
A0(Cτ )Q is injective. It follows that j∗ξ is a nonzero element of ker(iτ )∗.

Remark 2.4. The behaviour of ker i∗ is related to the problem of finding a
criterion for a zero cycle on a smooth surface S to be rationally equivalent
to zero. Let T (S) be the kernel of the Albanese map. M. Green [G3] has
defined a ’higher Abel–Jacobi map’ ψ2

2 : T (S) → J2
2 (S). Let C ⊂ S be a

smooth curve. The kernel of the map i∗ : A0(C) → A0(S) is contained in
the kernel of the composed map f = ψ2

2◦i∗ : J(C)var → J2
2 (S). Voisin [V2]

has shown that the map ψ2
2 may fail to be injective (see [BDPR] for another

counterexample), hence the inclusion ker i∗ ⊆ ker f can be strict.
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