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Chapter 0

Introduction

Consider the following classical problem in complex analysis: let {pi}i∈I be a
discrete set of points in the complex plane, and let {ai}i∈I be a set of integers.
Determine whether there exists a meromorphic function f such that f has a
zero of order ai at pi if ai ≥ 0, a pole of order |ai| at pi if ai < 0 and no zeroes
or poles outside the set {pi}. Thus the problem is to find a meromorphic
function f such that the principal divisor

div(f) =
∑

p∈C

ordp(f)

equals
∑

i∈I aipi. It follows from a theorem of Weierstrass that this is always
possible; see e.g. [Ah, Chapter 5, Thm. 7]. For the modern sheaf–theoretic
approach see [Gu, pp. 121–126].

When we replace C by a compact complex manifold C of dimension one
(a compact Riemann surface), the question becomes harder. In this case we
consider a finite set of points {p1, . . . , pk} with multiplicities {a1, . . . , ak},
i.e., a divisor D =

∑k
i=1 aipi. The divisor D is called effective if ai ≥ 0 for

i = 1, . . . , k; its degree is deg(D) =
∑k

i=1 ai. A divisor is called linearly
equivalent to zero if there exists a meromorphic function f on C such that
D = div(f). As deg(div(f)) = 0, a divisor D can be linearly equivalent to
zero only if deg(D) = 0. If C = P1, this condition is also sufficient.

For divisors on Riemann surfaces of arbitrary genus, one can determine
whether a divisor is linearly equivalent to zero by attaching a new invari-
ant, the Abel–Jacobi invariant, to divisors of degree zero. To obtain this
invariant, choose a topological 1–chain γ whose boundary is D. Integration
over γ defines a linear functional fγ ∈ H0(C,Ω1

C)∨ on the space of global
holomorphic 1–forms on C, and if we divide out by the lattice H1(C,Z) we
obtain a well–defined element ψC(D) = [fγ] in the complex torus J(C) =
H0(C,Ω1

C)∨/H1(C,Z). Let Div0(C) be the group of divisors of degree zero.
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The map
ψC : Div0(C) → J(C)

is called the Abel–Jacobi map. The solution to our original problem is given
by the following theorem of Abel:

Theorem 0.0.1. Let D =
∑k

i=1 aipi be a divisor on a compact Riemann
surface C. There exists a meromorphic function f such that D = div(f) if
and only if

(i) deg(D) = 0

(ii) ψC(D) = 0.

It is known that every compact Riemann surface C of genus g is a smooth
projective algebraic variety. The kth symmetric product C (k) is defined as
the quotient of the k-fold product C× . . .×C by the action of the symmetric
group Sk; it is a smooth variety that parametrizes effective divisors of degree
k. If we fix a base point p0 ∈ C, we obtain a map

Φk : C(k) → J(C)

that sends p1 + . . .+ pk to the linear functional Φk(p1 + . . .+ pk) defined by

Φk(p1 + . . .+ pk)(ω) =
k∑

i=1

∫ pi

p0

ω.

This map is generically injective if k < g; it is surjective if k ≥ g (Jacobi
inversion theorem). The complex torus J(C) is called the Jacobian of C. It
is an abelian variety whose geometry is closely related to the geometry of
linear systems on C (see [ACGH]).

We turn to higher dimensional varieties. An algebraic cycle of codimen-
sion p is a finite linear combination, with integral coefficients, of irreducible
subvarieties of codimension p in X. The group of algebraic cycles of codi-
mension p is denoted by Zp(X). An algebraic cycle Z =

∑
niZi is called

effective if ni ≥ 0 for all i. The two invariants that we considered before (the
degree and the Abel–Jacobi invariant) generalize to the higher dimensional
case. The degree is replaced by the cycle class map

clX : Zp(X) → H2p(X,Z)

that sends Z =
∑
niZi to

∑
ni[Zi], where [Zi] is the fundamental class of

Zi. An algebraic cycle Z ∈ Zp(X) is called homologically equivalent to zero
(notation Z ∼hom 0) if clX(Z) = 0. Set

Zp
hom(X) = ker clX = {Z ∈ Zp(X) : Z ∼hom 0}.
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The generalization of linear equivalence is rational equivalence: let W ⊂ X
be a subvariety of codimension p−1, and let f ∈ k(W )∗ be a rational function
on W . We define

div(f) =
∑

V⊂W

ordV (f).V,

where the sum is taken over all subvarieties V ⊂ W of codimension one.
An algebraic cycle Z ∈ Zp(X) is called rationally equivalent to zero if there
exists a finite collection {(Wi, fi)} of subvarieties Wi of codimension p − 1
and rational functions fi ∈ k(Wi)

∗ such that

Z =
∑

i

div(fi).

Two algebraic cycles Z and Z ′ are called algebraically equivalent if there
exists a family of cycles W ⊂ X × T parametrized by an irreducible variety
T and two points t0, t1 in T such that Z = Wt0 = W ∩ X × {t0} and
Z ′ = Wt1 = W ∩X × {t1}.

Remark 0.0.2. In the definition of algebraic equivalence we may assume
that T is a smooth, irreducible curve. If T is rational, we recover the notion
of rational equivalence.

Set

Zp
rat(X) = {Z ∈ Zp(X) : Z ∼rat 0}

Zp
alg(X) = {Z ∈ Zp(X) : Z ∼alg 0}.

We have inclusions

Zp
rat(X) ⊆ Zp

alg(X) ⊆ Zp
hom(X) ⊂ Zp(X).

The quotients are denoted by

CHp(X) = Zp(X)/Zp
rat(X)

CHp
alg(X) = Zp

alg(X)/Zp
rat(X)

CHp
hom(X) = Zp

hom(X)/Zp
rat(X)

Griffp(X) = Zp
hom(X)/Zp

alg(X).

The group CHp(X) is called the Chow group of codimension p cycles on X,
and Griffp(X) is called the Griffiths group of codimension p cycles.

To define the Abel–Jacobi map on X, we recall some basic facts from
Hodge theory. Let Ak(X) be the set of complex–valued C∞ k–forms on X.
It admits a decomposition

Ak(X) =
⊕

p+q=kA
p,q(X)
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where Ap,q(X) denotes the set of C∞ k–forms of type (p, q), i.e., the k–forms
that can be expressed in local coordinates as

ω =
∑

|I|=p,|J |=q

fI,JdzI ∧ dzJ .

Set
F pAk(X) =

⊕
r≥pA

r,k−r(X),

and let Akc (X) be the set of closed k–forms. De Rham’s theorem shows that
Hk(X,C) ∼= Akc (X)/dAk−1(X). By the Hodge theorem, the decomposition
of Ak(X) into forms of type (p, q) induces a decomposition

Hk(X,C) ∼=
⊕

p+q=kH
p,q(X),

the Hodge decomposition. The associated Hodge filtration is

Hk(X,C) = F 0Hk(X,C) ⊃ . . . ⊃ F kHk(X,C) ⊃ F k+1Hk(X,C) = 0,

where
F pHk(X,C) ∼=

⊕
r≥pH

r,k−r(X).

One can summarize this by saying that Hk(X,Z) carries a Hodge structure
of weight k; see [G4, Lecture 1] for the definition.

If clX(Z) = 0, there exists a topological (2n− 2p+ 1)–chain γ such that
∂γ = Z. Integration over γ defines a linear functional

fγ ∈ F n−p+1A2n−2p+1(X)∨.

If ω ∈ F n−p+1A2n−2p+1(X) is exact, there exists a form η ∈ F n−p+1A2n−2p(X)
such that dη = ω by the principle of two types [loc.cit.]. By the theorem of
Stokes the functional fγ descends to a functional on F n−p+1H2n−2p+1(X,C)∨.
The image of H2n−2p+1(X,Z) in F n−p+1H2n−2p+1(X,C)∨ is a lattice Λ, and
the image of fγ in the complex torus

Jp(X) = F n−p+1H2n−2p+1(X,C)∨/Λ

is well–defined; it is called the Abel–Jacobi invariant ψX(Z) of Z. As the
annihilator of F n−p+1H2n−2p+1(X,C) under the cup product pairing

H2n−2p+1(X,C) ×H2p−1(X,C) → C

is F pH2p−1(X,C), we can identify Jp(X) with the quotient

H2p−1(X,C)/F pH2p−1(X,C) + imH2p−1(X,Z).
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The complex torus Jp(X) is called the pth intermediate Jacobian. If p = 1
we obtain the Picard variety

Pic0(X) = H1(X,OX)/H1(X,Z);

if p = n we obtain the Albanese variety

Alb(X) = H0(X,Ω1
X)∨/H1(X,Z).

Thus Jp(X) is an abelian variety if p = 1 or p = n. In general, J p(X) is not
an abelian variety if 1 < p < n. Since every map from P1 to a complex torus
is constant, it follows that ψX(Zp

rat(X)) = 0; hence there is an induced map

ψX : CHp
hom(X) → Jp(X).

In the case of divisors (codimension one cycles), homological and algebraic
equivalence coincide. Hence the image of

clX : CH1(X) → H2(X,Z),

which is a finitely generated abelian group, is identified with the Néron–
Severi group of divisors modulo algebraic equivalence. The Abel–Jacobi map
induces an isomorphism

ψX : CH1
hom(X) = CH1

alg(X) → Pic0(X);

see for instance [V4, Lecture 1]. Thus the invariants clX and ψX determine
whether a divisor is rationally equivalent to zero, as in the case of curves.

For algebraic cycles of codimension p ≥ 2 the situation is more compli-
cated. Even the case of zero–cycles on surfaces presents considerable difficul-
ties, as is illustrated by Mumford’s famous result on ’infinite dimensionality’
of the kernel of the Albanese map

ψX : CH2
hom(X) → Alb(X)

for a surface X with pg(X) 6= 0. Bloch has conjectured that there exists a
decreasing filtration

CHp(X)Q = F 0 CHp(X)Q ⊃ . . . ⊃ F p CHp(X)Q ⊃ F p+1 CHp(X)Q = 0

whose graded pieces should admit maps

ψk : F k CHp(X)Q → Jpk (X)
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to Hodge–theoretic objects Jpk (X) that are associated to H2p−k(X,C). The
filtration F • should be inductively defined as F k+1 = kerψk ⊂ F k; for in-
stance, we should have

F 1 CHp(X)Q = CHp
hom(X)Q

F 2 CHp(X)Q = kerψX,Q.

If this program could be carried out, it would follow that Z ∈ Zp
rat(X) if and

only if ψ0(Z) = ψ1(Z) = . . . = ψp(Z) = 0. There have been several proposals
for the filtration F •, due to Beilinson, Murre and S. Saito; see the survey
article [J] for a detailed discussion. Recently, Green [G5] has proposed a
definition for the maps ψk.

So far, the only known invariants associated to algebraic cycles are the
maps ψ0 = clX and ψ1 = ψX . A natural problem is to study their image. It
is not difficult to show that the image of the rational cycle class map clX,Q
is contained in the set of rational Hodge classes

Hdgp(X)Q = {α ∈ H2p(X,Q) : j(α) ∈ Hp,p(X,C)},

where j : H2p(X,Q) → H2p(X,C) is the natural inclusion map given by ex-
tension of scalars. The Hodge conjecture predicts that im clX,Q = Hdgp(X)Q.

The Hodge conjecture holds for divisors (Lefschetz (1,1) theorem) and
for 1–dimensional cycles, but little is known about it in general. If {Xt}t∈T
is a family of hypersurface sections of a smooth projective variety Y , then
there exists (under a mild hypothesis) a countable union {Tα}α∈A of proper
analytic subsets of T such that the image of the rational cycle class map on
Xt is determined by the image of the cycle class map on Y if t /∈ ∪αTα (such
a point t ∈ T is called very general). Thus if the image of clY is known, we
can describe the image of the cycle class map clXt

for very general t ∈ T .
Let i : X → Y be the inclusion map, and define

H2m
var (X) = ker i∗ : H2m(X) → H2m+2(Y ).

Theorem 0.0.3.(Lefschetz) Let Y be a smooth projective variety of dimen-
sion 2m + 1, and let X = V (d) ⊂ Y be a degree d hypersurface section. If
X is very general and Hp,2m−p

var (X) 6= 0 for some p < m, then the image of

clX,Q : CHm(X)Q → H2m(X,Q)

coincides with the image of

i∗◦ clY,Q : CHm(Y )Q → H2m(X,Q).
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This result is usually stated only for Y = P2m+1. In that case, the conclu-
sion of the Theorem even holds with coefficients in Z; see [H1, Thm. 3.4], or
[Shi]. The proof in the general case is exactly the same, and is based on the
irreducibility of the monodromy action on H2m

var (X,Q). The same argument
can be applied for complete intersections (see [DK, Exposé XIX], again for
the case that Y is a projective space). If we take Y = P3, then the condition
of the theorem is satisfied for d ≥ 4. Using the exponential sequence, one
obtains the Noether–Lefschetz theorem:

Corollary 0.0.4. If X ⊂ P3 is a very general surface of degree d ≥ 4, then
CH1(X) ∼= Z.

Since the linear system |OX(k)| cut out by hypersurfaces of degree k is
complete, it even follows that every curve C ⊂ X is the complete inter-
section of X with a surface in P3. In [GH2] Griffiths and Harris tried to
generalize the Noether–Lefschetz theorem to the case of curves contained in
hypersurfaces of degree d ≥ 6 in P4 (a hypersurface of degree d ≤ 5 in P4

always contains lines). Voisin [V1] showed that the strongest possible state-
ment (every curve on X is a complete intersection) is false. It is not known
whether CH2(X) ∼= Z. Instead, one can try to prove the weaker assertion
imψX = 0 by establishing an analogue of Theorem 0.0.3 for the image of the
Abel–Jacobi map.

Let X be a smooth projective variety. The image

Jmalg(X) = ψX(CHm
alg(X))

of the Chow group of cycles that are algebraically equivalent to zero is
an abelian subvariety of Jm(X) associated to a sub Hodge structure con-
tained in Hm−1,m(X) + Hm,m−1(X). Let Jma (X) be the abelian subvariety
of Jm(X) associated to the maximal Q–sub Hodge structure contained in
Hm−1,m(X) + Hm,m−1(X). The (corrected) generalized Hodge conjecture
predicts that Jmalg(X) coincides with Jma (X). Let Y be a smooth projective
variety of dimension 2m, and let X = V (d) ⊂ Y be a very general hyper-
surface section. In this case we can describe Jmalg(X) in terms of Jmalg(Y ),
provided that d is sufficiently large. The proof is analogous to the proof of
Theorem 0.0.3 and can be found in [H1] or [Shi] (again they consider the case
Y = P2m, but the proof in the general case is the same).

Theorem 0.0.5. (Griffiths) Let Y be a smooth projective variety of dimen-
sion 2m, and let X = V (d) ⊂ Y be a hypersurface section of degree d. If X
is very general and Hp,2m−p−1

var (X) 6= 0 for some p < m− 1, then the image of

ψX,Q : CHm
alg(X)Q → Jm(X)Q
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coincides with the image of

i∗◦ψY,Q : CHm
alg(Y )Q → Jm(X)Q.

For instance, if X = V (d) ⊂ P4 is a very general threefold of degree d ≥ 5
then J2

alg(X) = 0. We are thus left with the problem of determining the
image of the Griffiths group Griffm(X) under the induced map

ψX : Griffm(X) → Jm(X)/Jmalg(X).

As homological and algebraic equivalence coincide for zero–cycles and divi-
sors, we consider curves on threefolds. For curves on Fano threefolds, i.e.,
threefolds whose anticanonical bundle is ample, homological and algebraic
equivalence also coincide; see [BlS]. Griffiths [Gr2] gave examples of quintic
threefolds containing two lines whose difference is not algebraically equiva-
lent to zero. As the Chow scheme parametrizing effective cycles on X has
countably many components, the Griffiths group and its image under ψX
are countable groups. Clemens has shown that the Griffiths group of a very
general quintic threefold is not finitely generated [C1]. The behaviour of the
group ψX(Griffm(X)) is mysterious. Using infinitesimal methods we shall
see that it is possible to describe this group in terms of the image of clY and
ψY for very general hypersurface sections X = V (d) ⊂ Y of sufficiently large
degree.

The use of infinitesimal methods in Hodge theory is motivated by the
observation that an abstract Hodge structure of weight k ≥ 2 (with h2,0 > 1
if k = 2) is generally not associated to a geometric object, due to the Griffiths
transversality relation. To circumvent this problem one can consider not only
the Hodge structure itself, but also its infinitesimal variation. The theory of
infinitesimal variations of Hodge structures was introduced in [CGGH]; see
also [PS]. A short exposition of the underlying ideas can be found in [Ha].
In brief, an infinitesimal variation of Hodge structure consists of a polarized
Hodge structure (HZ, F

•, Q) of weight k, a vector space T0 and a linear map

δ =
⊕

pδp : T0 →
⊕k

p=1 Hom(Hp,k−p, Hp−1,k−p+1).

subject to two additional conditions (see [CGGH] or [PS] for details). In the
geometric situation, T0 is the tangent space at 0 to the parameter space of a
family of smooth projective varieties and the maps

δp(v) : Hp,q(X0) → Hp−1,q+1(X0)

are given by cup product with the Kodaira–Spencer class ρ(v) ∈ H1(X0, TX0),
followed by contraction.
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There is a lot of multilinear algebra related to infinitesimal variations of
Hodge structure. For instance, we can perform the following construction:
choose a basis {v1, . . . , vk} for T∨

0 and consider the complex
∧• T∨

0 ⊗H with
maps dq :

∧q T∨
0 ⊗H → ∧q+1 T∨

0 ⊗H given by

dq(vi1 ∧ . . . ∧ viq ⊗ α) =
k∑

i=1

vi ∧ vi1 ∧ . . . ∧ viq ⊗ 〈vi,∇(α)〉,

where ∇ is the Gauss–Manin connection. This complex is exact, but the
subcomplexes

F p(
∧•T∨

0 ⊗H) : F p → T∨
0 ⊗ F p−1 → ∧2T∨

0 ⊗ F p−2 → · · ·

need no longer be exact.

Let Y be a smooth projective variety of dimension n + 1, and let X =
V (d) ⊂ Y be a smooth hypersurface section. Set H = Hn

var(X). As is shown
in [G2], the Koszul cohomology groups Hq(GrpF (

∧• T∨
0 ⊗ H)) carry a lot

of geometric information. For instance, if n = 2m the cohomology group
H0(Fm(

∧• T∨
0 ⊗H)) is related to an infinitesimal version of Theorem 0.0.3;

see [CGGH, §3a] or [V4, Lecture 3].

We shall briefly explain how the cohomology group H1(Fm(
∧• T∨

0 ⊗H))
is related to the behaviour of the Abel–Jacobi map on X if n = 2m − 1.
If X is very general, homologically trivial cycles on X can be ’spread out’
to relative cycles over the universal family of smooth degree d hypersurfaces
in Y ; see Chapter 2. As a relative cycle obtained in this way restricts to
homologically trivial cycles on the fibers, we can apply the Abel–Jacobi map
on the fibers to obtain a global holomorphic section ν of the family J m of
intermediate Jacobians. This global section satisfies a horizontality property
and is called a normal function; it has an infinitesimal invariant δν, whose
value at 0 is δν(0) ∈ H1(Fm(

∧• T∨
0 ⊗ H)). If δν = 0, then ν is locally

constant.

The primitive cohomology group Hm,m
pr (Y ) is defined as the kernel of

the map Hm,m(Y ) → Hm+1,m+1(Y ) given by cup product with the first
Chern class of OY (1). If d is sufficiently large, one can show that the group
H1(Fm(

∧• T∨
0 ⊗H)) is isomorphic to Hm,m

pr (Y ). This leads to a strengthen-
ing of Theorem 0.0.5, which is most conveniently phrased in terms of Deligne
cohomology. Let D•

X(m) be the truncated De Rham complex

0 → Q → OX → Ω1
X → · · · → Ωm−1

X → 0.

The rational Deligne cohomology group H2m
D (X,Q) is defined by

H2m
D (X,Q) = H2m(D•

X(m)).
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By construction, H2m
D (X,Q) fits into an exact sequence

0 → Jm(X)Q → H2m
D (X,Q) → Hdgm(X)Q → 0.

There are Deligne cycle class maps

clD,X : CHm(X) → H2m
D (X,Q)

that are compatible with the maps clX and ψX (see [EV] or [EZ]). The
following result of Green and Müller–Stach [GM] gives an almost complete
description of the image of ψX in terms of the geometry of Y :

Theorem 0.0.6. Let Y be a smooth projective variety of dimension 2m,
and let X = V (d) ⊂ Y be a very general hypersurface section of degree d
with inclusion map i : X → Y . If d is sufficiently large, then the image of

CHm(X)Q → H2m
D (X,Q) → H2m

D (X,Q)/i∗Jma (Y )

coincides with the image of

CHm(Y )Q → H2m
D (Y,Q) → H2m

D (X,Q)/i∗Jma (Y ).

As H0,2m−1
var (X) 6= 0 if d is sufficiently large, Theorem 0.0.5 shows that

Jmalg(X) = i∗Jmalg(Y ).

Hence the problem is to describe ψX(Griffm(X)) ⊂ Jm(X)/i∗Jmalg(Y ). The
result of Green and Müller–Stach almost achieves this goal: it describes the
image of ψX in the group Jm(X)/i∗Jma (Y ), which is a quotient of the group
Jm(X)/i∗Jmalg(Y ). If the generalized Hodge conjecture for Y holds, then
both groups coincide. We denote the Chow group of codimension m cycles
on Y whose restriction to X is homologically equivalent to zero by CHm(Y )0.
Theorem 0.0.6 says that the image of Griffm(X) in Jm(X)/i∗Jma (Y ) comes
from elements of CHm(Y )0 in one of the following two ways:

1. If Z ∈ CHm(Y )0 and clY (Z) 6= 0, then the commutative diagram

0 → Jm(Y )Q → H2m
D (Y,Q) → Hdgm(Y )Q → 0

↓ ↓ ↓
0 → Jm(X)Q → H2m

D (X,Q) → Hdgm(X)Q → 0

shows that we obtain an element of Jm(X) by restricting the Deligne
cycle class clD,Y (Z) to X.
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2. If clY (Z) = 0, then we may assume that Z belongs to Griffm(Y ) (we
divide out by the image of Jma (Y ) ⊃ Jmalg(Y )), and the restriction of
ψY (Z) maps to Jm(X)/i∗Jma (Y ).

Green and Voisin had previously considered the case Y = P2m and ob-
tained a sharp degree bound. They showed that the image of the Abel–Jacobi
map for a very general hypersurface of degree d is contained in the torsion
points of Jm(X) if d ≥ 4 + 2/(m− 1); see [G3]. Theorem 0.0.6 also holds
for complete intersections of sufficiently large multidegree, i.e., complete in-
tersections of multidegree (d0, . . . , dr) such that min(d0, . . . , dr) is sufficiently
large; the proof heavily relies on Nori’s connectivity theorem [No].

Remark 0.0.7. It is also possible to define higher order infinitesimal invari-
ants associated to families of algebraic cycles; see [V7]. These invariants
belong to the higher Koszul groups H i(GrpF (

∧• T∨
0 ⊗H)) (i ≥ 2) and should

be related to the conjectural higher cycle class maps ψi that we mentioned
before. Even though no such relation is known at present, these higher order
infinitesimal invariants have been used to study families of zero–cycles on
complete intersections; see [V5] and [AS].

In this thesis we study the image of the Abel–Jacobi map for complete
intersections of sufficiently large multidegree in a smooth projective variety
Y . Our aim is to prove a version of Theorem 0.0.6 with precise degree bounds
in case Y is a projective space or, more generally, a Grassmann variety.
The basis for our infinitesimal calculations is the description of the variable
cohomology of X = V (d0, . . . , dr) ⊂ Y in terms of a ring R, the Jacobi ring.
In Chapter 1 we collect a number of technical results on Jacobi rings. In the
case of hypersurfaces, these rings arise by the classical construction of taking
residues of differential forms on Y with logarithmic poles along the divisor.
Recently the theory of Jacobi rings was extended to the case of complete
intersections by a trick that reduces the problem to the codimension one
case. The reader may wish to skip Chapter 1 on first reading and refer back
to it as needed. In Chapter 2 we generalize the theorem of Green and Voisin
to the case of complete intersections in projective space:

Theorem 0.0.8. (cf. Theorem 2.4.1) Let X = V (d0, . . . , dr) ⊂ P2m+r be a
smooth complete intersection. Suppose that m ≥ 2 and d0 ≥ . . . ≥ dr. If X
is very general and

(1)
r∑
i=0

di + (m− 2)dr ≥ 2m+ r + 2
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(2)
r∑
i=1

di + (m− 1)dr ≥ 2m+ r + 1,

then the image of ψX : CHm
hom(X) → Jm(X) is contained in the torsion

points of Jm(X).

The exceptional cases of this theorem were known to be counterexam-
ples, except for the case of odd–dimensional complete intersections of four
quadrics. We treat this remaining case in Chapter 3:

Theorem 0.0.9.(cf. Theorem 3.3.6) Let X = V (2, 2, 2, 2) ⊂ P2m+3 (m ≥ 2)
be a smooth complete intersection of four quadrics. If X is very general, then
imψX,Q 6= 0.

Bardelli [Bar] proved this theorem in the case m = 2; the proof for m > 2
is based on his methods. Note that as a consequence of this result the degree
bounds in Theorem 0.0.8 are sharp.

Chapter 4 is devoted to the generalization of Theorem 0.0.8 to complete
intersections in Grassmann varieties.

Theorem 0.0.10. (cf. Theorem 4.3.11) Let X = V (d0, . . . , dr) ⊂ Y =
G(s, ` + 1) (d0 ≥ . . . ≥ dr) be a smooth complete intersection of dimen-
sion 2m− 1 (m ≥ 2). If X is very general and

(1)
r∑
i=0

di + (m− 2)dr ≥ `+ 2

(2)
r∑
i=1

di + (m− 1)dr ≥ `+ 1

(3)
r∑

i=min(1,r)

di ≥ `− 1,

then the image of clD,X : CHm(X)Q → H2m
D (X,Q) coincides with the image

of i∗◦ clD,Y : CHm(Y )Q → H2m
D (X,Q).

Note that condition (3), which is needed for the description of the coho-
mology of X in terms of the Jacobi ring, is stronger than the conditions (1)
and (2) if m > 2. In the case of Grassmann varieties of lines in projective
space (s = 2) we can replace condition (3) by a weaker condition, and we
obtain reasonably precise degree bounds; see Proposition 4.4.2. For instance,
if Y = G(2, 5) is the Grassmann variety of lines in P4 (the first interesting
case, as G(2, 4) can be embedded as a smooth quadric in P5), we obtain the
following result:
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Theorem 0.0.11. LetX = V (d0, . . . , dr) (d0 ≥ . . . ≥ dr, r ≤ 2) be a smooth
complete intersection in Y = G(2, 5). Then the conclusion of Theorem 0.0.10
holds for very general X, except possibly if

(i) X = V (2)

(ii) X = V (d, 1, 1), d ≥ 1

(iii) X = V (d, 2, 1), d ≥ 2.

We consider one of the exceptional cases, the quadratic line complex in
the Grassmann variety of lines in P4, in Chapter 5. This five–dimensional
quadratic line complex has been studied by the classical geometers B. Segre
and L. Roth. We prove the generalized Hodge conjecture in this case, thus
verifying that the quadratic line complex indeed provides a counterexample
to the previous theorem:

Theorem 0.0.12.(cf. Theorem 5.3.9) Let X = V (2) ⊂ G(2, 5) be a smooth
quadratic line complex. If X is general, then

ψX : CH3
hom(X) → J3(X)

is surjective.
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Notation

We work throughout over the field of complex numbers. Cohomology is with
coefficients in C, unless stated otherwise.

(i) We say that a general (resp. very general) point of a variety X has
property (P ) if the set of points x ∈ X that do not satisfy this property
is contained in a Zariski closed proper subset (resp. is contained in a
countable union of proper analytic subsets).

(ii) A good compactification of a quasi–projective variety X is a smooth,
compact projective variety X ⊃ X such that X \ X is a divisor with
normal crossings.

(iii) Let E be a vector bundle over a smooth projective variety Y . The zero
locus of a global section s ∈ H0(Y,E) is denoted by V (s). A complete
intersection of multidegree (d0, . . . , dr) in a smooth projective variety
Y is denoted by V (d0, . . . , dr).

(iv) The Grassmann variety of k–dimensional linear subspaces of a complex
vector space V of dimension n is denoted by G(k, V ) or G(k, n). The
Hilbert scheme of k–planes that are contained in a smooth projective
variety X is denoted by Fk(X). By abuse of language, Fk(X) is usually
callled the Fano variety of k–planes contained in X.

(v) The words pencil, net and web refer to linear systems of dimension one,
two and three respectively. The base locus of a linear system V ⊂ |L|
is denoted by Bs(V ).

(vi) If V1, . . . , Vk are linear subspaces of a complex vector space V , their
linear span is denoted by 〈V1, . . . , Vk〉.

(vii) We say that a property (P ) holds for sufficiently ample line bundles if
there exists an ample line bundle L0 such that (P ) holds for all line
bundles L such that L⊗ L−1

0 is ample.

(viii) Let f : X → S be a proper surjective morphism of quasi–projective
varieties. The locus C = {x ∈ X : dim f∗(TX,x) < dim TS,f(x)} is
called the critical locus of f . The image ∆ = f(C) ⊂ S is called the
discriminant locus of f .



Chapter 1

Jacobi rings

1.1 Introduction

This chapter contains a number of technical results that will be used in Chap-
ters 2 and 4. Let Y be a smooth projective variety of dimension n + 1, and
let X ⊂ Y be an ample divisor with inclusion map i : X → Y . The coho-
mology group Hn(X,Q) splits into a ’fixed’ part Hn

fix(X,Q) = i∗Hn(Y,Q)
and a ’variable’ part Hn

var(X,Q). Using residues of rational differential forms
on Y with poles along X, one can describe the graded pieces of the Hodge
filtration on Hn

var(X) in terms of a ring R, the Jacobi ring. This construc-
tion was classically known for curves in P2; it was generalized to the case
of hypersurfaces in projective space by Griffiths [Gr2], and to the case of
sufficiently ample divisors in an arbitrary smooth projective variety Y by
Carlson, Green, Griffiths and Harris [CGGH]. The description of Hn

var(X)
in terms of the Jacobi ring is useful for infinitesimal computations in Hodge
theory.

In Section 1.2 we present the method of [CGGH] in a slightly different way,
using jet bundles. The generalization to the case of complete intersections is
given in Section 1.3, following [Te2] and [Ko2].

1.2 Jacobi rings for hypersurfaces

Let Y be a smooth projective variety of dimension n + 1. Let L be a very
ample line bundle on Y , and let X ∈ |L| be a smooth divisor. We denote
the inclusion maps by i : X → Y and j : Y \X → Y . Starting from the long

17
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exact sequence of relative homology groups

· · · → Hn+1(Y,Q) → Hn+1(Y,X; Q) → Hn(X,Q) → Hn(Y,Q) → · · ·

we apply Poincaré–Lefschetz duality to obtain the Gysin sequence

· · · → Hn+1(Y,Q)
j∗→ Hn+1(Y \X,Q)

∂→ Hn(X,Q)
i∗→ Hn+2(Y,Q) → · · · .

The inclusion of complexes

Ω•
Y (logX) → j∗Ω

•
Y \X

is a quasi–isomorphism; see [D2, I, Cor. 3.13]. In [PS, (11.4)] it is shown
that the Gysin sequence is connected to the long exact sequence of hyperco-
homology groups associated to the Poincaré residue sequence

0 → Ω•
Y → Ω•

Y (logX) → i∗Ω
•
X [−1] → 0

by the commutative diagram

Hn−1(Ω•
X) −→ Hn+1(Ω•

Y ) −→ Hn+1(Ω•
Y (logX))

Res−→ Hn(Ω•
X)y∼=

y∼=
y∼=

y∼=

Hn−1(X,C)
2πi i∗−→ Hn+1(Y,C) −→ Hn+1(Y \X,C)

1
2πi

∂−→ Hn(X,C).

Let F • be the ’filtration bête’ on Ω•
Y (logX), given by

F pΩq
Y (logX) =

{
Ωq
Y (logX) if q ≥ p

0 if q < p.

We define an increasing weight filtration W• on Ω•
Y (logX) by

WkΩ
p
Y (logX) =





0 if k < 0
Ωp
Y if k = 0

Ωp
Y (logX) if k ≥ 1.

Let

F pHk(Y \X) = im Hk(F pΩ•
Y (logX)) → Hk(Ω•

Y (logX))

and
Wk+pH

k(Y \X) = im Hk(WpΩ
•
Y (logX)) → Hk(Ω•

Y (logX))

be the induced filtrations on Hk(Ω•
Y (logX)) ∼= Hk(Y \ X,C). The weight

filtration W• is defined over Q (cf. [St, (2.5)]). Deligne has shown that the
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Hodge and weight filtrations F • and W• define a mixed Hodge structure
(MHS) on Hk(Y \X) such that the exact sequence

· · · → Hn+1(Y ) −→ Hn+1(Y \X)
Res−→ Hn(X)(−1)

i∗−→ Hn+2(Y ) → · · ·

becomes an exact sequence of mixed Hodge strucures; see [D3, (3.2.5)] and
[D4, (9.2.1.2)]. Note that the graded pieces of the weight filtration are

GrWk Hk(Y \X) ∼= im j∗ : Hk(Y ) → Hk(Y \X)

GrWk+1H
k(Y \X) ∼= ker i∗ : Hk−1(X)(−1) → Hk+1(Y ).

There is a perfect pairing between the groupsHk(Y,X; Q) ∼= Hk
c (Y \X,Q)

and H2n−k+2(Y \X,Q) (Poincaré–Lefschetz duality). Therefore we can also
work with the exact sequence

· · · → Hn(Y,X; Q) → Hn(Y,Q) → Hn(X,Q) → Hn+1(Y,X; Q) → · · ·

that is dual to the Gysin sequence. In order to describe the MHS on the
relative cohomology Hk(Y,X), we recall the definition of the mapping cone
of a morphism of complexes.

Definition 1.2.1. Let f : A• → B• be a morphism of complexes. The
complex C•(f) = A•⊕B•[−1] is called the mapping cone of f . Its differential
is given by d(α, β) = (dA(α), f(α) − dB(β)).

The complex C•(f) fits into an exact sequence

0 → B•[−1] → C•(f) → A• → 0

and the connecting homomorphism Hk(A•) → Hk+1(B•[−1]) ∼= Hk(B•)
coincides with the map Hk(f) induced by f .

Remark 1.2.2. Some authors define C•(f) = A•[1]⊕B•. We have adopted
a different convention here, since it leads to a more natural indexation. With
this convention, C•(f) is isomorphic to the total complex associated with the
double complex A• → B•, where A• is put in degree zero.

Let f : Ω•
Y → i∗Ω

•
X be the restriction map. The complex C•(f) is quasi–

isomorphic to

Ω•
Y,X = ker f : Ω•

Y → i∗Ω
•
X .
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The five lemma shows that Hk(C•(f)) ∼= Hk(Y,X; C). Set

W−1C
•(f) = i∗Ω

•
X [−1]

W0C
•(f) = C•(f),

and let F • be the filtration bête on C•(f). The induced filtrations W• and
F • on the cohomology define a MHS on Hk(Y,X) (cf. [DD, Lemme 2.2]).
Note that

GrWk−1H
k(Y,X) ∼= coker i∗ : Hk−1(Y ) → Hk−1(X)

GrWk Hk(Y,X) ∼= ker i∗ : Hk(Y ) → Hk(X).

Remark 1.2.3.

(i) The duality isomorphism

D : H2n−k+2(Y,X; Q) → Hom(Hk(Y \X,Q),Q)(−n− 1)

is an isomorphism of MHS. The isomorphism between

GrpF H
2n−k+2(Y,X) ∼= H2n−k−p+2(Y,Ωp

Y,X)

and

GrpF H
k(Y \X)∨(−n− 1) ∼= (Grn+1−p

F Hk(Y \X))∨

∼= Hk+p−n−1(Y,Ωn−p+1
Y (logX))∨

can be interpreted in terms of Serre duality: we have a nondegenerate
pairing

Ωp
Y (logX) × Ωn−p+1

Y,X → KY

given by wedge product. Let

TY (− logX) = {θ ∈ Der(OY ) : θ.IX ⊆ IX}

be the sheaf of vector fields on Y that are tangent to X. The sheaf
TY (− logX) is dual to Ω1

Y (logX), hence locally free of rank n + 1. If
we combine the isomorphism

KY ⊗ ∧pTY (− logX) ∼= Ωn−p+1
Y,X

with Serre duality, we obtain a perfect pairing

Hq(Y,Ωp
Y (logX)) ×Hn−q+1(Y,Ωn−p+1

Y,X ) → Hn+1(Y,Ωn+1
Y ) ∼= C.



21

(ii) Note that Ωn+1
Y (logX) ∼= KY⊗L; hence Ωn−p+1

Y,X
∼= Ωn−p+1

Y (logX)⊗L−1.

Cup product with c1(L) defines the Lefschetz operator

uY : Hk(Y ) → Hk+2(Y ).

For k ≤ n+ 1 we define the primitive part of the cohomology of Y by

Hk
pr(Y ) = kerun−k+2

Y : Hk(Y ) → H2n−k+4(Y ).

The primitive cohomology groups Hk
pr(X) are defined analogously, by means

of the Lefschetz operator uX .

Definition 1.2.4. The variable cohomology of X is

Hn
var(X) = ker i∗ : Hn(X) → Hn+2(Y ).

Let QX( , ) (resp. QY ( , )) be the nondegenerate bilinear form on the
vector space Hn(X,Q) (resp. Hn+2(Y,Q)) given by cup product.

Lemma 1.2.5. There is an isomorphism of Q–Hodge structures

Hn
pr(X,Q) ∼= i∗Hn

pr(Y,Q)
⊕
Hn

var(X,Q).

Proof: If α ∈ Hn(X,Q) and β ∈ Hn(Y,Q), then QX(α, i∗β) = QY (i∗α, β).
Therefore Hn

var(X,Q) is the orthogonal complement of i∗Hn(Y,Q) with re-
spect to QX( , ). The commutative diagram

Hn−2(Y,Q)
uY−→ Hn(Y,Q)

uY−→ Hn+2(Y,Q)yi∗

yi∗

yi∗

Hn−2(X,Q)
uX−→ Hn(X,Q)

uX−→ Hn+2(X,Q)

shows that uXH
n−2(X,Q) ⊂ i∗Hn(Y,Q), since the vertical arrow on the left

hand side is an isomorphism by the Lefschetz hyperplane theorem. Thus
Hn

var(X,Q) ⊂ Hn
pr(X,Q). Since the map i∗ : Hn+2(X,Q) → Hn+4(Y,Q) is

injective and i∗uXi
∗ = u2

Y , an element β ∈ Hn(Y,Q) belongs to Hn
pr(Y,Q) =

keru2
Y if and only if i∗β belongs to Hn

pr(X,Q) = keruX . Thus i∗Hn(Y,Q) ∩
Hn

pr(X,Q) = i∗Hn
pr(Y,Q). As Hn

pr(X,Q) carries a polarized Hodge structure,
the orthogonal complement Hn

var(X,Q) of i∗Hn
pr(Y,Q) in Hn

pr(X,Q) is a sub
Hodge structure; thus we obtain the desired splitting. �
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The exact sequence

0 → Ωn−p+1
Y → Ωn−p+1

Y (logX) → i∗Ω
n−p
X → 0

induces a short exact sequence

0 → Hp
pr(Y,Ω

n−p+1
Y ) → Hp(Y,Ωn−p+1

Y (logX)) → Hp
var(X,Ω

n−p
X ) → 0.

In addition to the Hodge filtration F • there is another natural filtration on
Hn+1(Y \X), the order of pole filtration P •. We define P pj∗Ω

•
Y \X ⊂ j∗Ω

•
Y \X

as the subcomplex

0 → · · · → 0 → Ωp
Y (X) → Ωp+1

Y (2X) → · · ·

that starts in degree p. Deligne has shown that the inclusion of complexes

(Ω•
Y (logX), F •) → (j∗Ω

•
Y \X , P

•)

is a filtered quasi–isomorphism; see [D2, I, Prop. 3.13]. Given suitable
vanishing theorems of the form

H i(Y,Ωj
Y (kX)) = 0,

we obtain an isomorphism

Hp(Ωn+1−p
Y (logX)) ∼= H0(KY ⊗ Lp+1)

H0(KY ⊗ Lp) + dH0(Ωn
Y ⊗ Lp)

(1.1)

that describes the graded pieces of the Hodge filtration on Hn+1(Y \X) in
terms of rational (n+ 1)–forms on Y with poles along X (see [CGGH, §3] or
[PS, §11]).

In the case of degree d hypersurfaces X = V (f) ⊂ Pn+1 this approach
was worked out by Griffiths [Gr2]; it leads to an isomorphism

Hn−p,p
var (X) ∼= R(p+1)d−n−2

where R, the Jacobi ring, is the quotient of C[x0, . . . , xn+1] by the Jacobi
ideal J = ( ∂f

∂x0
, . . . , ∂f

∂xn+1
).

Embed Y as a subvariety in PH0(Y, L)∨ by the linear system |L|, and let

S̃ =
⊕

p≥0H
0(Y, Lp)

be its homogeneous coordinate ring. The S̃–module

M =
⊕

p≥0H
0(Y,KY ⊗ Lp+1)
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is called the Arbarello–Sernesi module; it contains the Jacobi module

J =
⊕

p≥0sH
0(Y,KY ⊗ Lp) + dH0(Y,Ωn

Y ⊗ Lp)

as a submodule. The isomorphism (1.1) leads to description of the variable
cohomology of X in terms of the quotient module M/J . We shall take a
slightly different approach, based on an elegant description of J in terms of
jet bundles. This is due to Green and Griffiths (see [G4, Lecture 4]; cf. also
[G1] and [SSU]).

Let ∆(2) be the subscheme of Y ×Y defined by I2
∆, where I∆ is the ideal

sheaf of the diagonal ∆ ⊂ Y × Y . Let p1 and p2 be the projections of Y × Y
onto the first and second factor. The sheaf

P 1(L) = (p1)∗(p
∗
2L⊗O∆(2))

fits into an exact sequence of OY –modules

0 → Ω1
Y ⊗ L→ P 1(L) → L→ 0 (1.2)

and is thus locally free of rank n+2 (cf. [EGA] or [Kl, IV A]). The extension
class of (1.2) is 2πi.c1(L) ∈ H1(Y,Ω1

Y ); see [At, Prop. 12]. There is a natural
mapping

j1 : L→ P 1(L)

that sends a section s to its 1–jet j1(s). Let

ΣL = Hom(P 1(L), L) = P 1(L)∨ ⊗ L

be the bundle of first order differential operators on sections of L. Dualizing
(1.2) and twisting by L, we obtain an exact sequence

0 → OY → ΣL → TY → 0 (1.3)

with extension class −2πi.c1(L).

Remark 1.2.6. If Y = Pn+1, the sequence (1.3) coincides with the Euler
sequence. This follows from [Kl, (IV,17)].

Lemma 1.2.7. If X = V (s) ⊂ Y is a smooth divisor, we have an exact
sequence

0 → TY (− logX) → ΣL → L→ 0, (1.4)

where the map TY (− logX) → ΣL is the natural inclusion of TY (− logX) in
the sheaf of first order differential operators on sections of L and the map
ΣL → L is given by contraction with j1(s).
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Proof: (cf. [SSU, I, (6.2.4)] or [Ko2, Lemma 2.3]) Since X ⊂ Y is a smooth
divisor, we can choose local coordinates (z1, . . . , zn+1) on Y such that L|U ∼=
U × C and s(z1, . . . , zn+1) = z1. A local frame for TY (− logX) is given by

z1
∂

∂z1
,
∂

∂z2
, . . . ,

∂

∂zn+1
.

If

D = a(z) +
n+1∑

i=1

bi(z)
∂

∂zi
∈ Γ(U,ΣL)

is a first order differential operator then

〈D, j1(s)〉 = D(s) = a(z)s+
n+1∑

i=1

bi(z)
∂s

∂zi
= a(z)s+ b1(z).

Hence the symbol map ΣL → TY induces an isomorphism between the kernel
of j1(s) : ΣL → L and TY (− logX). �

We can now define the generalization of the Jacobi module J .

Definition 1.2.8. Let X = V (s) ⊂ Y be a smooth divisor, and let F be a
coherent sheaf on Y .

(i) J̃Y,s(F) is the image of the map

H0(Y,F ⊗ ΣL ⊗ L−1) → H0(Y,F)

that is induced by the exact sequence (1.4).

(ii)
R̃Y,s(F) = H0(Y,F)/J̃Y,s(F).

The natural candidate for the Jacobi ring is the ring

R̃ =
⊕

p,q≥0R̃Y,s(KY ⊗ Lp+1).

In general this is not the right choice; we need a slightly modified version.
Define

RY,s(KY ⊗ Lp+1) =

{
R̃Y,s(KY ⊗ Lp+1) if p ≥ 1
H0(Y,KY ⊗ L) if p = 0.

Similarly we define

JY,s(KY ⊗ Lp+1) =

{
J̃Y,s(KY ⊗ Lp+1) if p ≥ 1

0 if p = 0.
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Definition 1.2.9.

(i)
S =

⊕
p,q≥0H

0(Y,K⊗q
Y ⊗ Lp+1).

(ii) The ring
R =

⊕
p,q≥0RY,s(K

⊗q
Y ⊗ Lp+1)

is the Jacobi ring of X.

(iii) The ideal
J =

⊕
p,q≥0JY,s(K

⊗q
Y ⊗ Lp+1)

is the Jacobi ideal of X.

Remark 1.2.10. If H0(Y,KY ) = H0(Y,Ωn
Y ) = 0, then J̃Y,s(KY ⊗ L) = 0

and the rings R and R̃ coincide. This happens for instance when Y is a
Grassmann variety or a quadric.

Lemma 1.2.11. If p > 0 and

(i) H i(Y,Ωn+1−i
Y ⊗ Lp+1−i) = 0 for all 1 ≤ i ≤ p

(ii) H i(Y,Ωn+1−i
Y ⊗ Lp−i) = H i(Y,Ωn−i

Y ⊗ Lp−i) = 0 for all 1 ≤ i ≤ p− 1,

then
Hp(Y,Ωn−p+1

Y (logX)) ∼= RY,s(KY ⊗ Lp+1).

If p = 0, then
H0(Y,Ωn+1

Y (logX)) ∼= H0(Y,KY ⊗ L).

Proof: Dualize (1.4) and take exterior powers to obtain a resolution

0 → Ωn−p+1
Y (logX) → ∧n−p+2Σ∨

L ⊗ L→ · · · → ∧n+2Σ∨
L ⊗ Lp+1 → 0.

Set

Ck =

{
Ωn−p+1
Y (logX) if k = 0

∧n−p+k+1Σ∨
L ⊗ Lk if 1 ≤ k ≤ p+ 1.

The spectral sequence

Ep,q
1 = Hq(Y,Cp) ⇒ Hp+q(C•)

associated to this complex converges to zero, since the complex is exact.
Chasing through this spectral sequence, we find that

Hp(Ωn−p+1
Y (logX)) ∼= coker H0(

∧n+1Σ∨
L ⊗ Lp) → H0(

∧n+2Σ∨
L ⊗ Lp+1)

= RY,s(KY ⊗ Lp+1)
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if p > 0 and

H1(Y,
∧n+1Σ∨

L ⊗ Lp) = . . . = Hp(Y,
∧n−p+2Σ∨

L ⊗ L) = 0

H1(Y,
∧nΣ∨

L ⊗ Lp−1) = . . . = Hp−1(Y,
∧n−p+2Σ∨

L ⊗ L) = 0.

The result then follows from the exact sequence

0 → Ωk
Y → ∧kΣ∨

L → Ωk−1
Y → 0

that is obtained from (1.3) by dualizing and taking exterior powers. Note
that

H i(Y,Ωn+2−i
Y ⊗ Lp+1−i) = 0 if 1 ≤ i ≤ p

by the Kodaira–Nakano vanishing theorem, since L is ample. For the case
p = 0, note that Ωn+1

Y (logX) ∼= KY ⊗ L. �

For k ≥ n+ 1 we define

Hk(Y )0 = keruY : Hk(Y ) → Hk+2(Y )
∼= ker i∗ : Hk(Y ) → Hk(X).

The last equality follows from the commutative diagram

Hk(Y ) uY−−→ Hk+2(Y )yi∗

Hk(X) �
�

�
�

�3

i∗

since the map i∗ is an isomorphism if k ≥ n + 1. Note that Hn+1(Y )0 =
Hn+1

pr (Y ).

Remark 1.2.12. If Y = Pn+1 and L = OP(d), there is a duality between
RY,s(KY ⊗ Lp+1) and RY,s(KY ⊗ Ln−p+1). In general this duality fails, due
to the presence of primitive cohomology on Y : it can be shown that if L is
sufficiently ample, there is a map RY,s(KY ⊗ Lp+1) → RY,s(KY ⊗ Ln−p+1)∨

with kernel Hn−p+1,p
pr (Y ) and cokernel Hn−p,p+1

pr (Y ).

Since H1(Y,KY ⊗Lp) = 0 for all p ≥ 1 by the Kodaira vanishing theorem,
the tensor product of (1.3) with KY ⊗Lp gives rise to a short exact sequence

0 → H0(Y,KY ⊗ Lp) → H0(Y,ΣL ⊗KY ⊗ Lp) → H0(Y,Ωn
Y ⊗ Lp) → 0.
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This sequence fits into a commutative diagram

0x
H0(Y,Ωn

Y ⊗ Lp)x

H0(Y,ΣL ⊗KY ⊗ Lp) j1(s)−−−→ H0(Y,KY ⊗ Lp+1).x
H0(Y,KY ⊗ Lp)x

0

H
H

H
H

H
Hj

�
�

�
�

�
�*

d

s

Hence we obtain an isomorphism

RY,s(KY ⊗ Lp+1) ∼= H0(Y,KY ⊗ Lp+1)

H0(Y,KY ⊗ Lp) + dH0(Y,Ωn
Y ⊗ Lp)

.

If the conditions of Lemma 1.2.11 are satisfied, we recover the isomorphism
(1.1).

Remark 1.2.13. If X = V (f) ⊂ Pn+1, deg f = d, the ring R is graded in a
natural way by Pic(Pn+1) = Z and becomes a zero–dimensional Gorenstein
ring of top degree (n + 2)(d − 2). Since the sequence (1.3) coincides with
the Euler sequence (see Remark 1.2.6), we recover the usual definition of the
Jacobi ideal: the graded piece Jk is the image of the map

( ∂f
∂x0
, . . . , ∂f

∂xn+1
) :

⊕n+1H0(P,OP(k + 1 − d)) → H0(P,OP(k)).

See also [G4, Lecture 4].

1.3 . Jacobi rings for complete intersections

Having treated the case of divisors, we turn to complete intersections in Y .
Suppose that dim Y = n+ r + 1 (r > 0). Let

E =
⊕r

i=0Li
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be a direct sum of very ample line bundles on Y , and let X = V (s) ⊂ Y be
a smooth n–dimensional complete intersection of divisors Di ∈ |Li| defined
by a section s ∈ H0(Y,E). Let i : X → Y be the inclusion map, and define
Hn

var(X) = ker i∗ : Hn(X) → Hn+2r+2(Y ). In this case, the Gysin sequence

→ Hn+2r+1(Y \X) → Hn(X) → Hn+2r+2(Y ) → Hn+2r+2(Y \X) →

does not lead to a direct description of Hn
var(X), as we have to choose a good

compactification of Y \X to describe the MHS on Hn+2r+1(Y \X).

If we assume that

(∗) D = D0 ∪ . . . ∪Dr is a strict normal crossing divisor,

the MHS on the cohomology of Y \D is well understood. One can then study
Hn

var(X) using the residue map

Hn+r+1(Y \D) → Hn
var(X).

This approach has been worked out by Libgober [Li]; it leads to a description
of Hn

var(X) in terms of residues of meromorphic differential forms on Y , but
the assumption (∗) is too restrictive.

There is a method that reduces the description of Hn
var(X) to the case of

divisors. For complete intersections in projective space this is essentially due
to Terasoma [Te2]. See the introduction of Chapter 2 for a more detailed
discussion of the origins of this method.

The idea is to reduce the problem to the case of a divisor in the projective
bundle P = P(E∨) of hyperplanes in the fibers of E. Let ξE = OP (1) be the
tautological line bundle on P , and let π : P → Y be the projection map. As
in the case of projective space we have

Riπ∗ξ
k
E =





SkE if i = 0, k ≥ 0
detE∨ ⊗ S−k−r−1E∨ if i = r, k ≤ −r − 1

0 otherwise.

Let σ ∈ H0(P, ξE) be the section that corresponds to s ∈ H0(Y,E) under
the canonical isomorphism H0(P, ξE) = H0(Y,E). The section σ defines a
divisor

X = V (σ) ⊂ P

whose Hodge–theoretic properties are strongly related to that of X ⊂ Y .

Lemma 1.3.1. ξE is very ample if and only if the line bundles L0, . . . , Lr
are very ample.
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Proof: (cf. [BeS, (3.2.3)]) We identify Y with the zero section in the line
bundle L∨

i (i = 0, . . . , r). By definition, ξE is very ample if and only if

(f0, . . . , fr) : E∨ \ Y → H0(Y,E)∨ \ {0} is an embedding.

Hence ξE is very ample if and only if the map fi : L∨
i \Y → H0(Y, Li)

∨ \ {0}
is an embedding for all i = 0, . . . , r, and the assertion follows. �

Lemma 1.3.2.

X is smooth of dimension n ⇐⇒ X is smooth of dimension n+ 2r.

Proof: Choose a local frame {e0, . . . , er} of E over an open subset U ⊂
Y . We can express the section sU = s|U in terms of this local frame as
sU =

∑r
i=0 siei. The corresponding section σU : U × Pr → C is given by the

same expression, where we consider the ei(y) as coordinate functions on the
fiber E∨

y . Choose local coordinates (y1, . . . , yn+r+1) on U and homogeneous
coordinates (z0 : . . . : zr) on Pr. We can write

σU (y1, . . . , yn+r+1, z0 : . . . : zr) =

r∑

i=0

si(y)zi.

The partial derivatives

∂σU (y, z)

∂yk
=

r∑

i=0

∂si(y)

∂yk
zi

and
∂σU (y, z)

∂zk
= sk(y)

simultaneously vanish at (y, z) if and only if

1. s0(y) = . . . = sr(y) = 0

2.

(
∂si(y)

∂yj

)
has rank at most r.

Therefore (y, z) ∈ X is singular if and only if y ∈ X is singular. �
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Lemma 1.3.3.

Hk
pr(P,Q) ∼=

{
Hk(Y ) if 0 ≤ k ≤ 2r + 1

Hk(Y )/ur+1
Y Hk−2r−2(Y ) if 2r + 2 ≤ k ≤ n+ 2r + 1.

Proof: Let uξ be the Lefschetz operator on P , given by cup product with
c1(ξE). Set x = c1(E). We can determine the action of uξ on H∗(P,Q) using
the isomorphism of rings

H∗(P,Q) ∼= H∗(Y,Q)[x]

(xr+1 + c1(E)xr + . . . + cr+1(E))
.

If k ≤ 2r + 1, then uξ acts as

uξ(αk−2 + αk−4x+ . . .+ α0x
[ k−2

2
]) = αk−2x+ . . .+ α0x

[ k
2
].

Thus Hk
pr(P ) ∼= Hk(Y ) ⊗H0(Pr) ∼= Hk(Y ) if k ≤ 2r + 1. If k ≥ 2r + 2 then

uξ(αk−2 + αk−4x+ . . . + αk−2r−2x
r) = −cr+1(E) ∪ αk−2r−2 +

+(αk−2 − cr(E) ∪ αk−2r−2)x+ . . .+ (αk−2r−4 − c1(E) ∪ αk−2r−2)x
r.

Set h = c1(OY (1)). Since the Chern polynomial of E is

c(E) = (1 + d0ht)(1 + d1ht) . . . (1 + drht),

the ith Chern class of E is ci(E) = si(d0, . . . , dr)h
i, where si is the ith

symmetric polynomial in d0, . . . , dr. Hence we obtain an isomorphism

Hk
pr(P,Q) ∼= Hk(Y,Q)/ur+1

Y Hk−2r−2(Y,Q).

�

Lemma 1.3.4. There are isomorphisms of Hodge structures

(1) Hn+2r+1
pr (P ) ∼= Hn+1

pr (Y )(−r).

(2) Hn+2r
var (X ) ∼= Hn

var(X)(−r).

Proof: Assertion (1) follows from Lemma 1.3.3:

Hn+2r+1
pr (P ) ∼= Hn+2r+1(Y )/ur+1

Y Hn−1(Y )

∼= urYH
n+1
pr (Y ).

Since
π : P \ X → Y \X
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is a Cr–bundle, the map π∗ induces an isomorphism

Hk+2r
c (P \ X ,Q) ∼= Hk

c (Y \X,Q)

for all k ≥ 0. The isomorphism (2) of variable cohomology groups follows
from the commutative diagram

Hn+2r
var (X ,Q) → Hn+2r+1

c (P \ X ,Q) → Hn+2r+1
pr (P,Q)

↓ ‖ ‖
Hn

var(X,Q)(−r) → Hn+1
c (Y \X,Q)(−r) → Hn+1

pr (Y,Q)(−r)
and is obtained as the composition of the maps

Hn+2r(X ,Q) → Hn+2r(X̃,Q)
π∗−→ Hn(X,Q),

where X̃ = π−1(X) = X × Pr. �

We shall translate the conditions of Lemma 1.2.11 for the pair (P,X )
to conditions on Y ; if these are satisfied, the graded pieces of the Hodge
filtration on Hn

var(X) are described by the graded pieces of the Jacobi ring
RP,σ of X ⊂ P . These results can be found in [Ko2].

On the projective bundle P there is an exact sequence of tangent bundles

0 → Tv → TP → π∗TY → 0. (1.5)

The relative tangent bundle Tv fits in the relative Euler sequence

0 → OP → π∗E∨ ⊗ ξE → Tv → 0. (1.6)

Lemma 1.3.5. H i(P,Ωj
P ⊗ ξkE) = 0 if

H i+t(P, π∗(Ωe
Y ⊗ ∧f+t+1E) ⊗ ξk−f−t−1

E ) = 0

for all nonnegative integers e, f and t such that e+ f = j and f + t ≤ r.

Proof: The exact sequence (1.5) induces a filtration on Ωj
P with graded

pieces π∗Ωe
Y ⊗ Ωf

v (e+ f = j). Hence H i(P,Ωj
P ⊗ ξkE) = 0 if

H i(P, π∗Ωe
Y ⊗ Ωf

v ⊗ ξkE) = 0

for all nonnegative integers e and f such that e + f = j. By dualizing and
taking exterior powers, we obtain from the relative Euler sequence (1.6) a
resolution

0 → π∗
∧r+1E∨ ⊗ ξ−r−1

E → · · · → π∗
∧f+1E ⊗ ξ−f−1

E → Ωf
v → 0.

The desired vanishing statement follows by chasing the associated spectral
sequence of hypercohomology (or simply by breaking up the resolution into
short exact sequences). �
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Remark 1.3.6. If f = 0, we chase through the whole Koszul resolution of
OY in the condition of Lemma 1.3.5. We can simply replace this condition
by H i(Y,Ωj

Y ⊗ SkE) = 0.

Lemma 1.3.7. If

(1) Hp−ν(Y,Ωn+r+1−p+ν
Y ⊗ detE ⊗ SνE) = 0 for all 0 ≤ ν ≤ p− 1

(2) Hp−ν−1(Y,Ωn+r+2−p+ν
Y ⊗ detE ⊗ SνE) = 0 for all 0 ≤ ν ≤ p− 2

(3) Hp−ν−1(Y,Ωn+r+1−p+ν
Y ⊗ detE ⊗ SνE) = 0 for all 0 ≤ ν ≤ p− 2

(4) Hp−ν(Y,Ωn+r+1−p+ν
Y ⊗∧rE⊗SνE) = 0 for all max(0, 1−r) ≤ ν ≤ p−1

then
Hp+r(P,Ωn−p+r+1

P (logX )) ∼= RP,σ(KP ⊗ ξp+r+1
E ).

Proof: Lemma 1.2.11 shows that

Hp+r(P,Ωn+r+1−p
P (log Y )) ∼= RP,σ(KP ⊗ ξp+r+1

E )

if

(i) Hp+r−i(P,Ωn+r−p+i+1
P ⊗ ξi+1

E ) = 0 for all 0 ≤ i ≤ p+ r − 1

(ii) Hp+r−i(P,Ωn+r−p+i+1
P ⊗ ξiE) = 0 for all 1 ≤ i ≤ p+ r − 1

(iii) Hp+r−i(P,Ωn+r−p+i
P ⊗ ξiE) = 0 for all 1 ≤ i ≤ p+ r − 1.

Since the computations for working out the conditions (i)–(iii) are similar
in each case, we only treat the condition (iii). By Lemma 1.3.5 it suffices to
show that

Hp+r−i+t(P, π∗(Ωe
Y ⊗ ∧f+t+1E) ⊗ ξi−f−t−1

E ) = 0

for all e ≥ 0 and f ≥ 0 such that e+ f = n+ r − p+ i and f + t ≤ r. Since
r− f ≥ t, it follows that e = (n+ r−p+ i+1)− f ≥ n−p+ i+ t+1. Hence

(p+ r − i+ t) + e ≥ (p+ r − i+ t) + (n− p+ i+ t+ 1) = n+ r + 2t+ 1,

and if t ≥ 1 we are done by the Kodaira–Nakano vanishing theorem. As
(p + r − i) + e = n + r + (r − f), we find that 0 ≤ r − f ≤ 1; we work out
the remaining cases

1. t = 0, e = n− p+ i, f = r

2. t = 0, e = n− p+ i+ 1, f = r − 1
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to obtain the conditions (3) and (4): in Case 1 we have to show that

Hp+r−i(P, π∗(Ωn−p+i
Y ⊗ detE) ⊗ ξi−r−1

E ) = 0.

Set ν = i − r − 1. If −r − 1 < ν < 0 then we are done, since π∗ξ
ν
E = 0. If

0 ≤ ν ≤ p − 2 we obtain condition (3). In a similar way we show that in
Case 2 we obtain condition (4) and that (i) and (ii) give rise to conditions
(1) and (2). �

Remark 1.3.8. The Jacobi ring R carries an obvious bigrading given by

Rp,q = RP,σ(K
q
P ⊗ ξp+1

E ).

In the case of projective space, it is more natural to grade the rings S and R
by the Picard group of P ; see Chapter 2. Therefore we have chosen to follow
this convention throughout the thesis. If PicY = Z we set

d(X) = deg(KY ) +
r∑

i=0

di

= deg(KY ⊗ detE)

and define a bigrading on S and R by

Sp,q.d(X) = H0(P,K⊗q
P ⊗ ξ

p+q(r+1)
E )

∼= H0(Y, (KY ⊗ detE)⊗q ⊗ SpE)

Rp,q.d(X) = RP,σ(K
⊗q
P ⊗ ξ

p+q(r+1)
E ).

Corollary 1.3.9. If the conditions (1)–(4) of Lemma 1.3.7 are satisfied, we
have an exact sequence

0 → Hn−p+1,p
pr (Y ) → Rp,d(X) → Hn−p,p

var (X) → 0.

Proof: Apply Lemmas 1.3.4 and 1.3.7 to the short exact sequence

0 → Hp+r
pr (Ωn−p+r+1

P ) → Hp+r(Ωn−p+r+1
P (logX )) → Hp+r

var (Ωn−p+r
X ) → 0.

�
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Chapter 2

Complete intersections in
projective space

2.1 Introduction

In an attempt to generalize the classical Noether–Lefschetz theorem for sur-
faces of degree d ≥ 4 in P3, Griffiths and Harris [GH2] raised a number of
questions concerning the behaviour of curves on a very general threefold X
of degree d ≥ 6 in P4. One of their questions is whether the image of the
Abel–Jacobi map ψX : CH2

hom(X) → J2(X) is zero. Green [G3] and Voisin
[V2] partially solved this problem; they showed that the image of ψX is
contained in the torsion points of J2(X). A similar statement holds for odd-
dimensional hypersurfaces in projective space: if X = V (d) ⊂ P2m (m ≥ 2)
is a very general hypersurface of degree d ≥ 4 + 2/(m− 1), then the image
of the Abel–Jacobi map ψX is contained in the torsion points of Jm(X); see
[G3].

We extend the result of Green and Voisin to smooth complete intersec-
tions of odd dimension in projective space (Theorem 2.4.1). In all but one
of the cases where the conditions of Theorem 2.4.1 are not satisfied, it is
known that the image of the Abel–Jacobi map is indeed non–torsion for a
very general member of the family of complete intersections under considera-
tion. We shall deal with the remaining exceptional case, the case of complete
intersections of four quadrics, in Chapter 3.

To extend the result of Green and Voisin, we have to find an efficient
algebraic description of the variable cohomology of complete intersections,
analogous to the Jacobi ring description in the case of projective hypersur-
faces. This problem has been solved through the work of various people,
including Terasoma [Te2], Konno [Ko2], Libgober–Teitelbaum [Li], [LT] and

35
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Dimca [Di2]; see also [ENS] and [BB]. The starting point is the following
observation, due to Terasoma: if X = V (f0, . . . , fr) is a smooth complete in-
tersection of multidegree (d0, . . . , dr) in Pn+r+1 with d0 = . . . = dr = d, then
the variable cohomology of X is isomorphic (up to a shift in the Hodge filtra-
tion) to the variable cohomology of the hypersurface X = V (F ) ⊂ Pr×Pn+r+1

of type (1, d) defined by the bihomogeneous polynomial

F (x, y) = y0f0(x) + . . .+ yrfr(x).

Konno extended this approach to the case of arbitrary multidegree by viewing
(f0, . . . , fr) as a section of the vector bundle E = OP(d0)⊕ . . .⊕OP(dr). The
product of projective spaces is replaced by the projective bundle P(E∨), and
X is replaced by the zero locus of the associated section of the tautological
line bundle ξE on P(E∨). The variable cohomology is then described via the
Jacobi ring that was introduced in Chapter 1. Working with an additional
hypothesis, Libgober obtained a description of the variable cohomology via
residues of differential forms defined on Pn+r+1, in the spirit of the work
of Griffiths [Gr2]; he observes that the variable cohomology is related to
a quotient of the ring S = C[x0, . . . , xn+r+1, y0, . . . , yr], where S carries a
suitable bigrading.

These different approaches were elegantly combined in the recent work of
Dimca. He observes that P(E∨), being a smooth and compact toric variety,
can be constructed as a geometric quotient. This explains the bigrading on
S and shows that P(E∨) behaves like the ordinary projective space in many
ways. Given this, Terasoma’s original approach goes through with only minor
modifications. See also [CCD] and the recent survey paper on toric geometry
by D. Cox [Cox2], where the trick of passing to the hypersurface X ⊂ P(E∨)
is baptized the Cayley trick.

In Section 2.2, Dimca’s method is used to give a description of the variable
cohomology in terms of the Jacobi ring of X in P(E∨). We have given a
down–to–earth presentation based on toric geometry, altough this leads to
some overlap with the results of Chapter 1. Next we discuss the so–called
symmetrizer lemma in Section 2.3, using which we prove our main result in
Section 2.4. This chapter is a revised version of the paper [Na].

2.2 Description of the Jacobi ring

Let X = V (d0, . . . , dr) ⊂ Pn+r+1 be a smooth complete intersection of di-
mension n ≥ 3, where di ≥ 2 for i = 0, . . . , r. We assume for the moment
that r > 0, i.e., X is not a hypersurface. The (r + 1)–tuple (f0, . . . , fr) of
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equations that define X represents a global section of the vector bundle E =
OP(d0)⊕. . .OP(dr). Let P = P(E∨) be the projective bundle whose fiber over
a point x ∈ Pn+r+1 is the projective space of hyperplanes in Ex. Using the
results in [Cox1], we can associate to the smooth and compact toric variety
P its ’homogeneous coordinate ring’ S = C[x0, . . . , xn+r+1, y0, . . . , yr]. This
ring carries a natural grading by elements of Pic(P ) = Pic(Pn+r+1)×Z ∼= Z2.
The variables xi (i = 0, . . . , n + r + 1) have bidegree (0, 1); the variables yj
(j = 0, . . . , r) have bidegree (1,−dj). Set

F (x, y) = y0f0(x) + . . .+ yrfr(x),

and let X ⊂ P be the divisor defined by F (x, y) ∈ S1,0.

Remark 2.2.1. Set N = n+ r + 1. We denote the open subset CN \ {0} ×
Cr+1 \ {0} ⊂ CN+r+1 by U . The presence of a bigrading on the ring S is
a consequence of the construction of P as a geometric quotient U/G, where
G = C∗ × C∗ acts on U by

(t1, t2).(x0, . . . , xN , y0, . . . , yr) = (t2x0, . . . , t2xN , t
−d0
2 t1y0, . . . , t

−dr

2 t1yr).

Good references for this construction are [Cox1], [Bat] and [BC].

Because F (x, y) ∈ S1,0 represents the global section of the tautological
line bundle ξE = OP (1) that corresponds to (f0, . . . , fr) under the canonical
isomorphism H0(P, ξE) = H0(Pn, E), Lemma 1.3.1 shows that X ⊂ P is a
very ample divisor if and only if di > 0 for all i = 0, . . . , r.

Note that X is non–singular if and only if X is non–singular (see Lemma
1.3.2). Let i (resp. j) be the inclusion of X in Pn+r+1 (resp. the inclusion of
X in P ). As in Chapter 1, we define the variable cohomology of X and X as

Hn
var(X,Q) = ker i∗ : Hn(X,Q) → Hn+2r+2(Pn+r+1,Q)

Hn+2r
var (X ,Q) = ker j∗ : Hn+2r(X ,Q) → Hn+2r+2(P,Q).

The notions of variable and primitive cohomology are strongly related;
see Lemma 1.2.5. Let π : P → Pn be the projection, and set X̃ = π−1(X) =
X ×Pr. By Lemma 1.3.4 the inclusion of X̃ in X induces an isomorphism of
Hodge structures

Hn+2r
var (X ,C)

∼−→ Hn
var(X,C) ⊗H2r(Pr,C).

The description of the variable cohomology of X strongly resembles the
description of the primitive cohomology of a hypersurface in Pn+1. As most
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of the results are similar to those in [Di1], [Do] and [CGGH], we shall omit
their proofs.

The Euler vector fields

e1 =
r∑

i=0

yi
∂

∂yi

and

e2 =
n+r+1∑

i=0

xi
∂

∂xi
−

r∑

i=0

diyi
∂

∂yi

generate the action of G = C∗ × C∗ on U = Cn+r+1 \ {0} × Cr+1 \ {0}. The
orbits of this action are the fibers of π : U → P .

Definition 2.2.2.

(i) For a monomial f = xα0
0 . . . xαN

N yβ0

0 . . . yβr
r we define |f |1 =

∑r
i=0 βi,

|f |2,x =
∑n+r+1

i=0 αi, |f |2,y = −∑r
j=0 djβj and |f |2 = |f |2,x + |f |2,y.

(ii) For a differential form ω = f.dxs1 ∧ . . . ∧ dxsi
∧ dyt1 ∧ . . . ∧ dytj we

set |ω|1 = |f |1 + j, |ω|2,x = |f |2,x + i, |ω|2,y = |f |2,y −
∑j

k=1 dtk and
|ω|2 = |ω|2,x + |ω|2,y.

In the statement of the following Lemma, the differential d is written in
the form d = dx + dy. We write Ak = H0(Cn+2r+2,Ωk

Cn+2r+2), and denote the
contraction with a vector field e by ie.

Lemma 2.2.3. If ω ∈ Ai and ω′ ∈ Aj, then

(i) ie(ω ∧ ω′) = ie(ω) ∧ ω′ + (−1)iω ∧ ie(ω′)

(ii) ie1(df) = |f |1f , ie2(df) = |f |2f

(iii) dy(ie1ω) + ie1(dyω) = |ω|1 ω

(iv) dx(ie2ω) + ie2(dxω) = |ω|2,x ω

(v) dy(ie2ω) + ie2(dyω) = |ω|2,y ω

(vi) |ie1(ω)|k = |ie2(ω)|k = |ω|k, k = 1, 2.

Lemma 2.2.4. A rational k–form ϕ on U given by

ϕ =
1

H(x, y)

∑

I,J

|I|+|J|=k

AI,J(x, y) dxI ∧ dyJ

satisfies ϕ = π∗ω for a rational k–form ω on P if and only if
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(i) ϕ is G–invariant, i.e., |ϕ|1 = |ϕ|2 = 0.

(ii) ie1(ϕ) = ie2(ϕ) = 0.

Proof: One easily checks that ϕ = π∗ω for a rational k–form ω on P if and
only if ϕ and dϕ are horizontal, i.e., ie(ϕ) = ie(dϕ) = 0 for all vertical vector
fields e. This is equivalent to ie1(ϕ) = ie2(ϕ) = ie1(dϕ) = ie2(dϕ) = 0, hence
the assertion follows from the previous Lemma. �

From now on we shall identify rational differential forms on P with their
pullbacks to U .

Lemma 2.2.5. Suppose that ψ ∈ Ak satisfies the following conditions

(i) ie1(ψ) = ie2(ψ) = 0

(ii) |ψ|1 6= 0 and at least one of |ψ|2, |ψ|2,x is nonzero.

Then ψ = ie2ie1(ϕ) for some ϕ ∈ Ak+2.

Proof: If |ψ|1 = α 6= 0 and |ψ|2,x = β 6= 0, we can write

αβψ = α(ie2(dxψ) + dx(ie2ψ))

= αie2dxψ = ie2(dx(αψ))

= ie2(dx(ie1(dyψ) + dy(ie1ψ)))

= ie2(dx(ie1(dyψ))) = −ie2ie1(dxdyψ).

�

Corollary 2.2.6.

ψ ∈ H0(P,Ωk
P (qX )) ⇐⇒ ψ =

ie2ie1(ϕ)

F (x, y)q

for some ϕ ∈ Ak+2 with |ϕ|1 = q and |ϕ|2 = 0.

The following Lemma shows how to express dψ in a similar form:

Lemma 2.2.7. If

ψ =
ie2ie1(ϕ)

F q
,

then

dψ =
ie2ie1(Fdϕ− q dF ∧ ϕ)

F q+1
.
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Lemma 2.2.8.

(i)

ψ ∈ H0(P,Ωn+2r+1
P ((q + 1)X )) ⇐⇒ ψ =

P (x, y)Ω

F q+1

where Ω = ie2ie1(dx0 ∧ . . . ∧ dxn+r+1 ∧ dy0 ∧ . . . ∧ dyr).

(ii)

ψ̃ ∈ H0(P,Ωn+2r
P (qX ) ⇐⇒ ψ̃ =

ie2ie1(ϕ)

F q

where

ϕ =
n+r+1∑

i=0

Qi(x, y)Ωi∧dy0 ∧ . . .∧dyr +
r∑

α=0

Rα(x, y)dx0∧ . . .∧dxn∧Ωα,

Ωi = dx0 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+r+1,

Ωα = dy0 ∧ . . . ∧ d̂yα ∧ . . . ∧ dyr.

Definition 2.2.9. The Jacobi ideal J(F ) ⊂ S is the ideal in S generated by
the partial derivatives

∂F

∂x0

, . . . ,
∂F

∂xn+r+1

,
∂F

∂y0

, . . . ,
∂F

∂yr
.

The Jacobi ring R is the quotient ring S/J(F ). The bigrading on S induces
a bigrading on R.

Proposition 2.2.10. There is a natural isomorphism

Hn−p,p
var (X) ∼= Rp,d(X),

where n = dim X and d(X) =
∑r

i=0 di − n− r − 2.

Proof: We have already seen that Hn−p,p
var (X) ∼= Hn−p+r,p+r

var (X ). There is an
exact sequence

0 → Hn−p+r+1,p+r
pr (P ) → Hp+r(Ωn−p+r+1

P (logX )) → Hn−p+r,p+r
var (X ) → 0.

From 1.3.4 we obtain Hn+2r+1
pr (P ) ∼= Hn+1

pr (Pn+r+1) = 0. Hence

Hn−p+r,p+r
var (X ) ∼= Hp+r(Ωn−p+r+1

P (logX )).
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Since X ⊂ P is an ample divisor by Lemma 1.3.1, we can apply the Bott
vanishing theorem on P (see [BC, Theorem 7.1]) to obtain

H i(P,Ωj
P (kX )) = 0 for all i > 0, k > 0 and j ≥ 0.

A spectral sequence argument shows that

Hp+r(Ωn−p+r+1
P (logX )) ∼= H0(Ωd

P ((p+ r + 1)X ))

H0(Ωd
P ((p+ r)X )) + dH0(Ωd−1

P ((p+ r)X )),

where d = dim P = n+ 2r + 1.
By Lemma 2.2.8, an element of H0(P,Ωd

P ((p+ r + 1)X )) can be written
in the form

ψP =
P (x, y)Ω

F p+r+1

where deg Ω = (r + 1,−d(X)) and deg(P (x, y)) = (p, d(X)). What we have
shown so far is that the map

Res : Sp,d(X) → F d−p+rHn+2r+1
var (X )

P (x, y) 7→ [Res(ψP )]

is surjective. If ψ̃ ∈ H0(P,Ωn+2r
P ((p+ r)X )), then ψ̃ =

ie2 ie1(ϕ)

F p+r and

dψ̃ =
{F (

∑N
i=0

∂Qi

∂xi
+

∑r
j=0

∂Rj

∂yj
) − (p+ r)(

∑N
i=0

∂F
∂xi
Qi +

∑r
j=0

∂F
∂yj
Rj}Ω

F p+r+1
,

where N = n+ r + 1. Hence

ψP ≡ dψ̃ modH0(Ωn+2r+1
P ((p+ r)X ) ⇐⇒ P ∈ J(F ).

This shows that Res induces an isomorphism Rp,d(X)
∼= Hn−p+r,p+r

var (X ), as
desired. �

Remark 2.2.11.

(i) If r = 0, then P(E∨) ∼= Pn+1, S = C[x0, . . . , xn+1, y0] and F (x, y) =
y0f0(x). Clearly the ring R(F ) is different from the Jacobi ring R(f0)
of the hypersurface V (f0) ⊂ Pn+1, but the map α : S → C[x0, . . . , xn+1]
that sends G(x0, . . . , xn+1, y0) to G(x0, . . . , xn+1, 1) induces an isomor-
phism R(F )p,d(X)

∼−→ R(f0)(p+1)d0−n−1 between the graded pieces of
these rings that describe Hn−p,p

var (X).
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(ii) The toric description of P shows that the bidegree of the canonical
bundle KP is (−r − 1, d(X)) and Sp,d(X)

∼= H0(P,KP ⊗ ξp+r+1
E ). The

proof of Proposition 2.2.10 shows that the Jacobi ring J(F ) coincides
with the Jacobi ring J defined in Chapter 1.

(iii) The description of the variable cohomology Hn
var(X) for a complete

intersection X in an arbitrary smooth and compact toric variety PΣ

proceeds along the same lines. The number of Euler vector fields equals
the rank of Pic(P(E∨)) = Pic(PΣ) × Z.

2.3 Symmetrizer lemma

Using a version of the symmetrizer lemma, we prove that the infinitesimal
invariants associated to certain normal functions are zero. Consequently
these normal functions are torsion sections of the fiber space of intermediate
Jacobians.

We keep the notation of Section 2.2, but from now on we consider the
case where X is a smooth complete intersection in P2m+r of odd dimension
n = 2m − 1. In this case we have H2m−1(X) = H2m−1

var (X) = H2m−1
pr (X).

Let U ⊂ PH0(P2m+r, E) be the open subset parametrizing smooth complete
intersections, and let f : XU → U be the universal family. The cohomology
groups of the fibers of f give rise to a local system HZ = R2m−1f∗Z. Let
H2m−1 = HZ⊗ZOU be the associated Hodge bundle; it is filtered by holomor-
phic subbundles Fp (0 ≤ p ≤ 2m − 1). The Hodge bundle comes equipped
with a flat connection ∇, the Gauss–Manin connection, whose flat sections
are the sections of the local system HZ. The filtration of subbundles F • is
shifted by ∇ according to the Griffiths transversality rule ∇F p ⊂ Ω1

U⊗Fp−1.
Let

Jm = H2m−1/(Fm +HZ)

be the sheaf of intermediate Jacobians over U . The Gauss–Manin connection
induces a map

∇ : Jm → Ω1
U ⊗H2m−1/Fm−1,

whose kernel is denoted by J m
h . By abuse of language, a global section of

Jm
h is called a normal function.

To study the image of the Abel–Jacobi map onX0 using normal functions,
we ’spread out’ cycles on a very general fiber Xu0 = f−1(u0) to relative cycles.
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We shall briefly describe this process. The relative Hilbert functor HilbXU/U

is represented by a countable union of projective schemes

HilbXU/U =
∐

P

HilbPXU/U
;

see [Koll, Chapter I] or [MFK, Chapter 0, §5c]. The relative Hilbert scheme
HilbXU/U admits a dominant structure morphism HilbXU/U → U . There
exists a countable union {Hα}α∈A of irreducible components of HilbXU/U that
do not dominate U . The images of these components under the morphism
HilbXU/U → U form a countable union {Sα}α∈A of proper subvarieties of
U . Choose a point u0 ∈ U \ ∪α∈ASα, and let Z0 ∈ HilbPXu0

. Let H0 be the
irreducible component of HilbXU/U that contains Z0. There exists a multi–
valued section ZU of H0 through Zu0. Let T → U be a finite covering such
that H0 admits a section over T (for instance, if we let T be the image of ZU
in H0, the diagonal ∆T : T → T ×U T gives the desired section). By abuse
of language, we shall also write g : T → U for the finite étale covering that
is obtained by removing the branch locus.

Thus if X0 = V (d0, . . . , dr) ⊂ Y is a very general complete intersection
and Z0 ∈ Zm

hom(X0), there exist a finite étale covering g : T → U , a relative
cycle ZT ∈ CHm

hom(XT/T ) and a point t0 ∈ g−1(0) such that the fiber of ZT
over t0 is Z0. Set Zt = ZT ∩ f−1

T (t) and let ν ∈ H0(T,Jm
h ) be the normal

function given by ν(t) = ψXt
(Zt). Set HQ = HZ⊗Z Q. The twisted De Rham

complex
Ω•
T ⊗HQ : H → Ω1

T ⊗H → Ω2
T ⊗H → · · ·

is a resolution of the local system HC = HQ ⊗Q C. Let Fm(Ω•
T ⊗HQ) be the

subcomplex
Fm → Ω1

T ⊗Fm−1 → Ω2
T ⊗Fm−2 → · · ·

of Ω•
T ⊗ HQ. Note that although the differential ∇ of Fm(Ω•

T ⊗ HQ) is not
OT–linear, the induced differential ∇ on the graded pieces GrpF (Ω•

T ⊗ HQ)
is OT–linear. The normal function ν has an infinitesimal invariant δν ∈
H0(T,H1(Fm(Ω•

T ⊗ HQ))); see [G4, Lecture 6]. It is known that ν has flat
local liftings if and only if δν = 0 [loc. cit.]. Hence, to prove that δν = 0 it
suffices to show that

H1(GrpF (Ω•
T ⊗HQ)) = 0 for all p ≥ m.

Let T0 be the tangent space to U at 0 ∈ U . As g : T → U is an étale covering,
the tangent space to T at t0 ∈ g−1(0) is isomorphic to T0. We want to show
that the first cohomology group of the complex

Hp,2m−p−1(X0) → T∨
0 ⊗Hp−1,2m−p(X0) →

2∧
T∨

0 ⊗Hp−2,2m−p+1(X0)
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vanishes. Dualizing this complex we obtain

2∧
T0 ⊗H2m−p+1,p−2(X0) → T0 ⊗H2m−p,p−1(X0) → H2m−p−1,p(X0).

Lemma 2.3.1. The diagram

∧2 S1,0 ⊗Rp−2,d(X) −→ S1,0 ⊗ Rp−1,d(X) −→ Rp,d(X)y
y

y∧2 T0 ⊗H2m−p+1,p−2(X0) −→ T0 ⊗H2m−p,p−1(X0) −→ H2m−p−1,p(X0)

is commutative.

Proof: This is a standard consequence of the description of H2m−1(X) by
residues of differential forms. Note that the identification of the tangent
space TU,0 with S1,0 is obtained by sending a polynomial G(x, y) ∈ S1,0 to
the infinitesimal deformation of X given by Ft(x, y) = F (x, y) + tG(x, y),
t2 = 0. The commutativity of the right square is established by the following
basic observation: if we write

ΩP (t) =
P (t)Ω

(F + tG)p+r
,

then

∂/∂tΩP (t)|t=0 ≡ −(p+ r)
P (0)GΩ

F p+r+1

modulo differential forms with poles of lower order. It follows that

∇∂/∂t Res ΩP (t) = ∂/∂t(Res ΩP (t))|t=0

= Res(∂/∂tΩP (t)|t=0) = Res(ΩPG).

The commutativity of the square on the left hand side follows in a similar
way. �

In the sequel we shall use some standard multi–index notation. For a
multi–index I = (i0, . . . , ir) we write 〈d, I〉 = d0i0 + . . . + drir. Let (i0)
denote the (r + 1)–tuple (0, . . . , 0, 1, 0, . . . , 0) where the number 1 occurs at
position i0.

Lemma 2.3.2. The multiplication map

Sa,b ⊗ Sα,β −→ Sa+α,b+β

is surjective if
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(i) a ≥ 0, α ≥ 0

(ii) 〈d, I〉+b ≥ 0 for all I with |I| = a, 〈d, J〉+β ≥ 0 for all J with |J | = α.

Proof: Note that Sa,b is spanned by the monomials yIxJ with |I| = a,
|J | = 〈d, I〉+b. Given a monomial xKyL with |L| = a+α, |K| = 〈d, L〉+b+β
we can write L = L1 ∪ L2 with |L1| = a, |L2| = α and K = K1 ∪K2 where
|K1| = 〈d, L1〉 + b, |K2| = 〈d, L2〉 + β. �

Lemma 2.3.3. (symmetrizer lemma) Assume that n ≥ 2, p ≥ 2 and
d0 ≥ . . . ≥ dr. The complex

2∧
S1,0 ⊗Rp−2,d(X) → S1,0 ⊗ Rp−1,d(X) → Rp,d(X)

is exact at the middle term if the following two conditions are satisfied:

(∗) d0 + . . .+ dr + (p− 2)dr ≥ n+ r + 3

(∗∗) d1 + . . .+ dr + (p− 1)dr ≥ n+ r + 2.

To prove the symmetrizer lemma, it suffices to show that

(i) The complex

2∧
S1,0 ⊗ Sp−2,d(X)

g−→ S1,0 ⊗ Sp−1,d(X)
h−→ Sp,d(X)

is exact at the middle term.

(ii) The map
S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

is surjective.

This follows by chasing the commutative diagram with exact columns

0 0 0
↓ ↓ ↓∧2 S1,0 ⊗ Jp−2,d(X) → S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

↓ ↓ ↓∧2 S1,0 ⊗ Sp−2,d(X) → S1,0 ⊗ Sp−1,d(X) → Sp,d(X)

↓ ↓ ↓∧2 S1,0 ⊗ Rp−2,d(X) → S1,0 ⊗Rp−1,d(X) → Rp,d(X)

↓ ↓ ↓
0 0 0.

We shall verify the conditions (i) and (ii) in Lemmas 2.3.4 and 2.3.7.
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Lemma 2.3.4. The complex

2∧
S1,0 ⊗ Sp−2,k

g−→ S1,0 ⊗ Sp−1,k
h−→ Sp,k

is exact at the middle term provided that p ≥ 2 and 〈d, J〉 + k > 0 for all
multi–indices J with |J | = p− 2.

Proof: The map g is given by

g(yi0x
I0 ∧ yi1xI1 ⊗ yKxL) = yi0x

I0 ⊗ yK+(i1)xL+I1 − yi1x
I1 ⊗ yK+(i0)xL+I0 .

This shows that

yi0x
I0 ⊗ yJ0xK0 ≡ yi1x

I1 ⊗ yJ1xK1 mod (im g)

if J0 + (i0) = J1 + (i1), K0 + I0 = K1 + I1 and K1 − I0 ≥ 0. In fact, if these
conditions are satisfied it follows that K0 − I1 ≥ 0 and

M = K0 + I0 = K1 + I1 = I0 + I1 + (K0 − I1)

= I0 + I1 + (K1 − I0);

hence K0 − I1 = K1 − I0 = L, |L| = 〈d, J〉+ k, and J = J0 − (i1) = J1 − (i0).
Combining the two relations

yi0x
I0 ⊗ yJ0xM−I0 ≡ yi1x

M−L ⊗ yJ1xL

≡ yi2x
I2 ⊗ yJ2xM−I2,

we find that
yi0x

I0 ⊗ yJ0xM−I0 ≡ yi2x
I2 ⊗ yJ2xM−I2

if J0 + (i0) = J2 + (i2) and if there exists an L with L ≤ M , L − I0 ≥ 0
and L − I2 ≥ 0. Here we choose J1 and i1 in the following way: take
i1 = max(i0, i2) and take J1 = Jα if i1 = iα, α ∈ {0, 2}. Notice that
|L| = 〈d, J1〉 + k.

If J0 − J2 = (i2)− (i0) and I0 − I2 = (k0)− (k2) (i.e., I0 and I2 also differ
by one change of index), we can choose L with L− I0 ≥ 0 and L− I2 ≥ 0 if
|L| > |I0| and |L| > |I2|, i.e., if

〈d, J1〉 + k > max(di0 , di2).

By construction this holds if 〈d, J〉 + k > 0, where we set J = J1 − (i0) if
i1 = i2 and J = J1 − (i2) if i1 = i0.

By transitivity we can show the existence of L if I0 and I2 differ by more
than one change of index. Hence

yi0x
I0 ⊗ yJ0xM−I0 ≡ yi2x

I2 ⊗ yJ2xM−I2
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if J0 + (i0) = J2 + (i2), M ≥ I0, M ≥ I1 and 〈d, J〉 + k > 0 (J = J0 − (i2) =
J2 − (i0)). If

h(
∑

i,I,K,L

ci,I,K,L yix
I ⊗ yKxL) =

∑

i,I,K,L

ci,I,K,L yK+(i)xI+L

=
∑

(J,M)

∑

(i,I,K,L)
K+(i)=J,I+L=M

ci,I,K,L yJxM = 0,

then ∑

(i,I,K,L)
K+(i)=J,I+L=M

ci,I,K,L = 0

for all pairs (J,M), hence

∑

i,I,K,L

ci,I,K,L yix
I ⊗ yKxL ≡ 0 mod (im g).

�

Remark 2.3.5. The proof of Lemma 2.3.4 is based on the proof of the sym-
metrizer lemma for projective hypersurfaces by Donagi and Green [DG]. It
is possible to prove Lemmas 2.3.4 and 2.3.7 in a different way, using the ab-
stract definition of the Jacobi ring from Chapter 1 and Castelnuovo–Mumford
regularity.

Corollary 2.3.6. Suppose that n ≥ 2 and p ≥ 2. The complex

2∧
S1,0 ⊗ Sp−2,d(X)

g−→ S1,0 ⊗ Sp−1,d(X)
h−→ Sp,d(X)

is exact at the middle term if condition (∗) of Lemma 2.3.3 is satisfied.

Proof: Apply Lemma 2.3.4 with k = d(X). �

Lemma 2.3.7. Suppose that n ≥ 2 and p ≥ 2. If the conditions (∗) and
(∗∗) of Lemma 2.3.3 are satisfied, the map

S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

is surjective.
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Proof: As deg(∂F/∂xk) = (1,−1) (0 ≤ k ≤ 2m + r) and deg(∂F/∂yi) =
(0, di) (0 ≤ i ≤ r), it suffices to show that the map µ′ that appears in the
commutative diagram

S1,0 ⊗ Sp−a−1,d(X)−b ⊗ Ja,b
µ′−→ Sp−a,d(X)−b ⊗ Ja,byν

yν′

S1,0 ⊗ Jp−1,d(X)
µ−→ Jp,d(X)

is surjective if (a, b) = (1,−1) and if (a, b) = (0, di) (i = 0, . . . , r). If (a, b) =
(1,−1), then µ′ is surjective if 〈d, J〉+d(X)+1 ≥ 0 for all J with |J | = p−2;
this follows from condition (∗).

If (a, b) = (0, di) (i = 0, . . . , r), then µ′ is surjective if

〈d, J〉 + d(X) − di ≥ 0

for all J with |J | = p− 1. This follows from the condition (∗∗). �

Corollary 2.3.8. Suppose that m ≥ 2 and d0 ≥ . . . ≥ dr. Then δν = 0
provided that

(1) d0 + . . .+ dr + (m− 2)dr ≥ 2m+ r + 2

(2) d1 + . . .+ dr + (m− 1)dr ≥ 2m+ r + 1.

Proof: This follows from Lemmas 2.3.1 and 2.3.3. �

Note that the first condition in Corollary 2.3.8 is implied by the second
one, unless d0 = . . . = dr.

Lemma 2.3.9. If the conditions (1) and (2) of Corollary 2.3.8 are satisfied,
the normal function ν has flat local liftings that are unique up to sections of
HZ.

Proof: It follows from (1) and (2) that δν = 0, hence ν has flat local liftings.
If ν̃ and ν̃ ′ are two flat liftings of ν over an open set U0 ⊂ T , we can write

ν̃ − ν̃ ′ = ϕ+ λ

where ϕ ∈ H0(U0,Fm) and λ ∈ H0(U0, HZ). Since ∇ϕ = ∇(ν̃ − ν̃ ′) = 0, it
suffices to show that the map

∇ : Fm → Ω1
T ⊗ Fm−1
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is injective. By duality, it suffices to show that for all t ∈ T the map

T ⊗H2m−p,p−1(Xt) → H2m−p−1,p(Xt)

is surjective for p ≥ m. This follows if the map

S1,0 ⊗ Sp−1,d(X) → Sp,d(X)

is surjective, and by Lemma 2.3.2 this holds if 〈d, J〉 + d(X) > 0 for all J
with |J | = p− 1. This follows from condition (1). �

If the conditions (1) and (2) of Corollary 2.3.8 are satisfied, then the
normal function ν is torsion. This is proved using a monodromy argument,
which is taken from [V4, Lecture 4].

Lemma 2.3.10. If ν has flat local liftings that are unique up to sections of
HZ, then ν ∈ H0(T,Jm

h ) is a torsion section of J .

Proof: Let ν̃ be a flat local lifting of ν in an open neighbourhood of t0 ∈ T .
We have to show that ν̃(t0) ∈ H2m−1(X0,Q). To this end we take a loop
γ : [0, 1] → T based at t0 and cover it by simply connected open sets Uα
(α = 1, . . . , k) such that ν has a flat lifting να on Uα. For all α, β ∈
{1, . . . , k} we have να − νβ = λαβ for some λαβ ∈ Γ(Uα ∩ Uβ, HZ); hence
we can modify ν2 by λ12 to obtain ν1 = ν2 on U1 ∩ U2. Proceeding in this
way on U2 ∩ U3, . . . , Uk−1 ∩ Uk, we find a new flat lifting ν̂ of ν in γ(1). Let
ρ : π1(T, t0) → AutH2m−1(X0,C) be the monodromy representation. By
definition we have

ρ(γ)(ν̃(t0)) − ν̃(t0) = ν̂(t0) − ν̃(t0),

and by assumption this element belongs to H2m−1(X0,Z).

Claim: If η ∈ H2m−1(X0,C) and ρ(γ)(η) − η ∈ H2m−1(X0,Z) for all γ ∈
π1(T, t0), then η ∈ H2m−1(X0,Q).

Note that the proof will be finished if we verify this Claim. To this end,
we view X0 as a hyperplane section of a smooth complete intersection Y0 ⊂
P2m+r+1 of dimension 2m and multidegree (d0, . . . , dr). Set L = OY (1). The
linear system |L| corresponds to a projective linear subspace of PH0(Pn, E).
Let ∆L ⊂ |L| be the discriminant locus, and define UL = |L| \ ∆L. It is
known that ∆L ⊂ |L| is an irreducible hypersurface (cf. [BeS, Lemma 1.6.5]).
Choose a Lefschetz pencil P1 ⊂ |L| of hyperplane sections of Y0 that passes
through the point 0 ∈ |L|, and denote the discriminant locus in PH0(Pn, E)
by ∆E. As ∆L = ∆E ∩ |L|, it follows that P1 ∩ ∆E = P1 ∩ ∆L = {t1, . . . , tk}
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is a finite set of points. The fundamental group of UL∩P1 = P1 \ {t1, . . . , tk}
has standard generators γi winding once around ti. Let δi ∈ H2m−1(X0,Z)
be the vanishing cocycle associated to γi. Since g∗π1(T, t0) ⊂ π1(U, 0) has
finite index, N say, we have γNi = g∗γ̃i for i = 1, . . . , k. According to the
Picard–Lefschetz formula, the action of γ̃i via the monodromy representation
is given by

ρ(γ̃i)(η) = η ±N〈η, δi〉δi.
Hence we find that ρ(γ̃i)(η) − η = ±N〈η, δi〉δi ∈ H2m−1(X0,Z) for i =
1, . . . , k. Thus 〈η, δi〉 ∈ Q for i = 1, . . . , k. The pairing

〈 , 〉 : H2m−1(X0,Q) ×H2m−1(X0,Q) → Q

is non–degenerate over Q, and induces an isomorphism

H2m−1(X0,Q)
∼→ Hom(H2m−1(X0,Q),Q))

sending an element α ∈ H2m−1(X0,Q) to 〈α,−〉. As the vanishing cocycles
δ1, . . . , δk generateH2m−1(X0,Q) (see for instance [V4, Lecture 4, 2.3] or [DK,
Exposé XVIII, 6.6.1]), it follows that 〈η, λ〉 ∈ Q for all λ ∈ H2m−1(X0,Q);
hence η ∈ H2m−1(X0,Q). �
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2.4 Main result

We formulate and prove the main result of this Chapter, which extends the
aforementioned theorem of Green–Voisin to the case of complete intersections
in projective space.

Theorem 2.4.1. Let X = V (d0, . . . , dr) ⊂ P2m+r be a smooth complete
intersection of odd dimension 2m − 1 (m ≥ 2) and multidegree (d0, . . . , dr)
(d0 ≥ . . . ≥ dr, di ≥ 2 for i = 0, . . . , r). If X is very general, then the image
of the Abel–Jacobi map

ψX : CHm
hom(X) → Jm(X)

is contained in the torsion points of Jm(X), unless we are in one of the
following cases:

(i) (r = 0) X = V (d) ⊂ P4 (3 ≤ d ≤ 5), X = V (3) ⊂ P6, X = V (3) ⊂ P8.

(ii) (r = 1) X = V (3, 3) ⊂ P5.

(iii) (r = 1) X = V (d, 2) ⊂ P2m+1, d ≥ 2, m ≥ 2.

(iv) (r = 2) X = V (d, 2, 2) ⊂ P2m+2, d ≥ 2, m ≥ 2.

(v) (r = 3) X = V (2, 2, 2, 2) ⊂ P2m+3, m ≥ 2.

Proof: We have seen that if X0 = V (d0, . . . , dr) ⊂ P2m+r is a very general
complete intersection, every cycle Z0 ∈ Zm

hom(X0) can be spread out to a
relative cycle ZT ∈ Zm

hom(XT/T ) after taking a finite étale covering T → U
of the parameter space. If the conditions (1) and (2) of Corollary 2.3.8 are
satisfied, the normal function ν ∈ H0(T,J m

h ) associated to ZT is torsion by
Lemmas 2.3.9 and 2.3.10. Note that this is the case if

(m+ r − 1)dr ≥ 2m+ r + 2 = 2(m+ r − 1) + 4 − r,

that is, if

dr ≥ 2 +
4 − r

m+ r − 1
.

For r = 0 this condition is

d0 ≥ 2 +
4

m− 1
.

This is the result for hypersurfaces of odd degree in projective space obtained
by Green and Voisin. The only exceptions are the ones listed in (i); see [G3].
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Note that the Abel–Jacobi map is trivial for quadric hypersurfaces, since
their intermediate Jacobians vanish.

For r ≥ 1, m ≥ 2 we have 4−r
m+r−1

≤ 2. Therefore we are done if dr ≥ 4,
and it remains to check the cases dr = 2 and dr = 3.

Case 1. dr = 2

(1) d0 + . . .+ dr−1 + 2m− 2 ≥ 2m+ r + 2

(2) d1 + . . .+ dr−1 + 2m ≥ 2m+ r + 1.

Since di ≥ 2 for i = 0, . . . , r, condition (1) is always satisfied if r ≥ 4;
condition (2) is always satisfied if r ≥ 3. We check the cases r = 1, r = 2
and r = 3 separately:

∗ r = 1
If (d0, d1) = (d, 2), then the condition (1) is satisfied if d0 ≥ 5, but (2) is

never satisfied.

∗ r = 2

(1) d0 + d1 ≥ 6

(2) d1 ≥ 3.

For (d0, d1, d2) = (d, 2, 2), d ≥ 2, the condition (2) is never satisfied. If
d1 ≥ 3, then (1) and (2) are satisfied.

∗ r = 3

(1) d0 + d1 + d2 ≥ 7

(2) d1 + d2 ≥ 4.

We see that condition (2) is always satisfied; condition (1) is satisfied unless
(d0, d1, d2, d3) = (2, 2, 2, 2).

Case 2. dr = 3

(1) d0 + . . .+ dr−1 + 3m− 3 ≥ 2m+ r + 2

(2) d1 + . . .+ dr−1 + 3m ≥ 2m+ r + 1.

As in this case di ≥ dr = 3 for i = 0, . . . , r, condition (1) is satisfied if
m + 2r ≥ 5 and condition (2) is satisfied if m + 2r ≥ 4. Hence (1) and (2)
are satisfied if m ≥ 2 and r ≥ 2. The only remaining case is m = 2, r = 1:

(1) d0 + d1 ≥ 7

(2) 2d1 ≥ 6.

Both conditions are satisfied unless (d0, d1) = (3, 3). �
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Remark 2.4.2. Let us consider the exceptional cases (i)–(v):

(i) The cubic and quartic threefold are Fano threefolds that contain a
positive–dimensional family F of lines; in both cases, the Abel–Jacobi
map Alb(F ) → J2(X) is surjective (cf. [Ty1], [CG] and [BlM]). The
cubic fivefold X = V (3) ⊂ P6 contains a family F of 2–planes; Collino
[Col] showed that Alb(F )

∼→ J3(X). For a very general quintic three-
fold X = V (5) ⊂ P4, the image of the Abel–Jacobi map is non–
torsion; see [Gr2] and [CC]. Clemens [C1] showed that the image of the
Abel–Jacobi map is not even finitely generated; his proof is based on
monodromy arguments. Voisin [V3] has given a different proof of this
statement using infinitesimal methods. The image of the Abel–Jacobi
map is also not finitely generated for a very general cubic sevenfold
X = V (3) ⊂ P8; see [AC].

(ii) For a very general intersection of two cubics X = V (3, 3) ⊂ P5, the
image of ψX is not finitely generated; see [BaM], [Par].

(iii) This case is covered by the following result:

Theorem. Let Y be a smooth projective variety of even dimension
2m, and let L be a very ample line bundle on Y . Suppose that X ∈ |L|
is a general smooth divisor. If

(i) H2m−1
var (X) 6= 0

(ii) im clY,Q ∩H2m
pr (Y,Q) 6= 0

then imψX,Q 6= 0.

This result is essentially due to Griffiths, N. Katz and Zucker; see [DK,
Exposé XVIII, Cor. 5.8.7]. Let U ⊂ |L| be the smooth part, and let VQ

be the local system of variable cohomology. Let P1 ⊂ |L| be a Lefschetz
pencil, with smooth part U0 = U ∩ P1. Katz shows that there is an
injective map

H2m
pr (Y,Q) → H1(U0, VQ).

As this map sends the class [Z] to the cohomological invariant ∂νZ of
the associated normal function νZ (see [Z1, Prop. 3.9]), the desired
statement follows. Note that we can replace (ii) by Hdgmpr(Y )Q 6= 0,
as it is possible to associate a normal function to a primitive Hodge
class on Y (cf. [G4, Lecture 6]). In a similar way one can deduce the
non–vanishing of the infinitesimal invariant δνZ ; see [MuS].

If Y is a quadric of dimension 2m and X = Y ∩ V (d) is a smooth hy-
persurface section, the conditions of the previous theorem are satisfied
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if Z = Z1 −Z2 is the difference of two m–planes that belong to the dif-
ferent rulings of Y (note that X has nontrivial vanishing cohomology;
see [DK, Exposé XI]).

(iv) This case can be handled in the same way as (ii). If Y = V (2, 2) ⊂
P2m+2 is a complete intersection of two quadrics, it is known that Y
contains exactly 4m+1 m–planes; the cohomology classes of the differ-
ences of these m–planes generate H2m

pr (Y,Q) [Re].

(v) For m = 2, it is known that the image of ψX is non–torsion if X is
very general. This follows from a result of Bardelli [Bar]. Using a
generalization of Bardelli’s techniques, we shall show in Chapter 3 that
the image of ψX is non–torsion for every m ≥ 2.

Remark 2.4.3.

(1) The cases (iii) and (iv) mentioned above are the only cases where the
technique of Katz produces non–torsion normal functions, in view of the
cohomological Noether–Lefschetz theorem (see [DK, Exposé XIX]). For
Calabi–Yau complete intersections and cubic sevenfolds (which can in
some sense be interpreted as the ’mirrors’ of rigid Calabi–Yau threefolds
[AC]) one uses a similar technique, based on Mark Green’s Lemma (see
[Kim] or [V4, Lecture 3]), which produces a countable union of ’good’
components of the Noether–Lefschetz locus whose union is dense in the
parameter space. For details, see [V3] or [BaM].

(2) Let V ⊂ U = PH0(P2m,OP(d)) \ ∆ be a Zariski open subset of the
complement of the discriminant locus for the family of hypersurfaces of
degree d in P2m. If d ≥ 2, then there are no nonzero normal functions
that are defined over V . This is clear if d = 2; for d ≥ 3 it is proved
in [GH2, §3], using a result of N. Katz on cohomology with values
in the local system of vanishing cohomology over a Lefschetz pencil
(see [DK, Exposé XVIII, Th. 5.7]) and results of Zucker on normal
functions defined over Lefschetz pencils (see [Z1, Thm. (4.17) and
Cor. (4.52)]). A similar argument applies in the case of complete
intersections X = V (d0, . . . , dr) such that di ≥ 2 for all i = 0, . . . , r.



Chapter 3

Complete intersections of four
quadrics

3.1 Introduction

Intersections of two or three quadrics in projective space have been studied
extensively (cf. [PB], [Re], [Te1] and [Ty2]). Suppose that X is a com-
plete intersection of two or three quadrics and dim X = 2m − 1 (m ≥ 2).
Then H2m−1(X) carries a Hodge structure of level one, and the intermediate
Jacobian Jm(X) is parametrized by a family of codimension m cycles, as
predicted by the generalized Hodge conjecture. If X = V (2, 2, 2, 2) ⊂ P2m+3

(m ≥ 2) is a complete intersection of four quadrics, then H2m−1(X) carries
a Hodge structure of level three; hence the Abel–Jacobi map

ψX : CHm
hom(X) −→ Jm(X)

cannot be surjective. For very general X, the algebraic part Jmalg(X) of the
intermediate Jacobian is zero (cf. Theorem 0.0.5), and the image of the
Abel–Jacobi map is (at most) a countable subgroup of Jm(X).

If m = 2, X ⊂ P7 is a Calabi–Yau threefold. Bardelli studied a family
{Xt} of this type with Xt invariant under a natural involution σ : P7 → P7.
In this case, the anti–invariant part H3(Xt)

− is a sub Hodge structure of
level one in H3(Xt). Bardelli showed that the corresponding abelian variety
J2(Xt)

− (a subtorus of J2(Xt)) is parametrized by a family of codimension m
cycles onXt; see [Bar]. By a specialization argument he concluded that imψX
is non–torsion for very general X. Voisin [V6] proved a similar statement for
arbitrary Calabi–Yau threefolds.

We show that the image of ψX is not contained in the torsion points of
Jm(X) if X = V (2, 2, 2, 2) ⊂ P2m+3 (m ≥ 2) is very general. As a conse-
quence, the degree bounds obtained in Theorem 2.4.1 are sharp. The results
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in this chapter are based on a slight modification of Bardelli’s techniques;
therefore we have chosen to preserve his notation, whenever possible. To
obtain nontrivial cycles on X, the idea is to consider singular quadrics that
contain X. If X is general, the web of quadrics that corresponds to X will
contain a finite number of quadrics of corank 2, i.e., of rank 2m + 2. A
quadric of rank 2m+ 2 is a cone with one–dimensional vertex over a smooth
quadric in P2m+1, hence it contains two rulings of projective (m+ 2)–planes.
We obtain interesting codimension m cycles on X by intersecting the differ-
ence of two (m+ 2)–planes from the different rulings with the three remain-
ing quadrics that define X. By construction these cycles are homologically
trivial. To show that their image under the Abel–Jacobi map is nonzero,
we define a natural involution σ on P2m+3 and specialize to complete inter-
sections of σ–invariant quadrics. As general complete intersections of four
σ–invariant quadrics contain a one–dimensional family of interesting cycles,
we can show the nontriviality of the Abel–Jacobi mapping for these varieties
using infinitesimal methods.

In Section 3.2 we study the family of cycles on general complete intersec-
tions of four σ–invariant quadrics. Section 3.3 is devoted to the infinitesimal
Abel–Jacobi mapping and the specialization argument. The results in this
chapter have previously appeared as report W96–09 at the University of
Leiden.

3.2 Construction of a family of cycles

Let X = V (2, 2, 2, 2) ⊂ P2m+3 (m ≥ 2) be an odd–dimensional smooth
complete intersection of four quadrics. In this section we consider quadrics
that are invariant under the involution

σ : P2m+3 → P2m+3, σ(x, y) = (x,−y)

where (x, y) = (x0 : . . . : xm+1 : y0 : . . . : ym+1) are homogeneous coordinates
on P2m+3. The fixed point locus of σ is

Fix(σ) = Pm+1
x q Pm+1

y ,

where Pm+1
x = {(x, y) ∈ P2m+3 : y = 0} and Pm+1

y = {(x, y) ∈ P2m+3 : x = 0}.
If X is general, then dim (X ∩ Fix(σ)) = m− 3. Set

Ṽ = H0(P2m+3,OP(2))



57

and let Ṽ ⊂ V be the linear subspace of σ–invariant quadrics. Note that

dim Ṽ =

(
2m+ 5

2

)
, dim V = (m+ 2)(m+ 3).

To produce cycles on X, we consider the varieties

Lk(X) = {Q ∈ P(Ṽ ) : V (Q) ⊃ X and rank Q ≤ k}

of singular quadrics containing X. Note that L2m(X) = ∅ since X is smooth.
If Q ∈ V then Q(x, y) = Q′(x) + Q′′(y), i.e., the corresponding symmetric
matrix Q is of the form

Q =

(
Q′ 0
0 Q′′

)
.

Suppose that X =
⋂3
i=0 V (Qi), Qi ∈ V , is a complete intersection of

four σ–invariant quadrics. Let M = 〈Q0, . . . , Q3〉 be the web spanned by
Q0, . . . , Q3, and let λ = (λ0, . . . , λ3) be homogeneous coordinates on M ∼= P3.
A quadric Q(λ) ∈M is of the form

Q(λ) =
3∑

i=0

λiQi, Qi(x, y) = Q′
i(x) +Q′′

i (y).

Consider the following subvarieties of P3:

S ′ = {λ ∈ P3 : rank (
∑

i

λiQ
′
i) ≤ m}

S ′′ = {λ ∈ P3 : rank (
∑

i

λiQ
′′
i ) ≤ m}

K ′ = {λ ∈ P3 : det(
∑

i

λiQ
′
i) = 0}

K ′′ = {λ ∈ P3 : det(
∑

i

λiQ
′′
i ) = 0}.

Set C = K ′ ∩K ′′. It is clear that

L2m+2(X) = S ′ ∪ S ′′ ∪ C.

Set Vx = H0(Pm+1
x ,OP(2)), Vy = H0(Pm+1

y ,OP(2)). The rational maps

p′ : P(V ) −− → P(Vx), p′(Q) = Q′

and
p′′ : P(V ) −− → P(Vy), p′′(Q) = Q′′
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induce a rational map

p′ × p′′ : P(V ) −− → P(Vx) × P(Vy) ∼= P(m+3
2 )−1 × P(m+3

2 )−1

with one–dimensional fibers. Let ∆x,1 ⊂ P(Vx) be the discriminant locus. It
is stratified by irreducible subvarieties

∆x,i = {Q′ ∈ P(Vx) : corank Q ≥ i} = {Q′ ∈ P(Vx) : dim (SingQ′) ≥ i− 1}

of codimension
(
i+1
2

)
in P(Vx). There is a similar stratification of ∆y,1 ⊂ P(Vy)

by irreducible subvarieties ∆y,i. The discriminant locus ∆1 ⊂ P(V ) consists
of two irreducible components ∆1,0 and ∆0,1 of codimension one:

∆1,0 = {(Q′, Q′′) ∈ P(V ) : detQ′ = 0}
∆0,1 = {(Q′, Q′′) ∈ P(V ) : detQ′′ = 0}.

We can write ∆2 = ∆2,0 ∪ ∆1,1 ∪ ∆0,2, where

∆2,0 = {(Q′, Q′′) ∈ P(V ) : rank Q′ ≤ m}
∆1,1 = {(Q′, Q′′) ∈ P(V ) : detQ′ = detQ′′ = 0}
∆0,2 = {(Q′, Q′′) ∈ P(V ) : rank Q′′ ≤ m}.

In general, the subvarieties ∆k = {Q ∈ P(V ) : dim Sing(Q) ≥ k − 1} admit
a similar decomposition

∆k = ∆k,0 ∪ . . . ∪ ∆0,k.

Lemma 3.2.1. ∆1,1 is irreducible.

Proof: Consider the correspondence

∆̃1,1 = {(Q, p′, p′′) ∈ P(V ) × Pm+1
x × Pm+1

y : p′ ∈ Sing(Q′), p′′ ∈ Sing(Q′′)}

with projections p1 : ∆̃1,1 → ∆1,1 and p2 : ∆̃1,1 → Pm+1
x × Pm+1

y . One readily

verifies that ∆̃1,1 = P(π∗
1S

2Ω1
Px

⊕ π∗
2S

2Ω1
Py

) is a locally trivial fiber bundle

over Pm+1
x × Pm+1

y , where π1 and π2 are the projections of Pm+1
x × Pm+1

y onto

the first and second factor. Hence ∆̃1,1 is smooth, connected and irreducible
and its image ∆1,1 = p1(∆̃1,1) is irreducible. �
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The irreducibility of the components ∆i,j of ∆k, k ≥ 2, is proved in a
similar way. Using the projection map p′ × p′′, we compute codim ∆i,j =
codim ∆x,i + codim ∆y,j. Hence

codim ∆1,1 = 2, codim ∆2,0 = codim ∆0,2 = 3

codim ∆2,1 = codim ∆1,2 = 4, codim ∆3,0 = codim ∆0,3 = 6.

Note that S ′ = ∆2,0 ∩M , S ′′ = ∆0,2 ∩M , K ′ = ∆1,0 ∩M , K ′′ = ∆0,1 ∩M
and C = ∆1,1 ∩M .

Let T ⊂ G(4, Ṽ ) be the subset parametrizing smooth complete intersec-
tions of four quadrics in P2m+3, and let U ⊂ G(4, V ) be the subset parametriz-
ing smooth complete intersections of four σ– invariant quadrics in P2m+3. Let
XU → U be the universal family; we denote the fiber over t ∈ U by Xt.

Lemma 3.2.2. There exists a Zariski open subset U 0 ⊂ U such that if
t ∈ U0, then X = Xt satisfies

(i) L2m+1(X) = ∅

(ii) S ′ and S ′′ are finite sets of
(
m+3

3

)
points.

(iii) S ′, S ′′ and C are mutually disjoint.

Proof:

(i) Since codim (∆3) = 4, a general web M ⊂ P(V ) does not intersect ∆3.

(ii) The locus ∆x,2 has codimension 3 in P(Vx). Hence, if the web M is
genral, the web p′(M) will intersect ∆x,2 in a finite number of points.
The degree of ∆x,2 is calculated in [HT, p. 81]. A similar argument
applies to ∆y,2.

(iii) follows directly from (i).
�

Remark 3.2.3. Let N be a web of quadrics in Pn, and let ∆ ⊂ N be its
discriminant locus. Let us compute the tangent space to ∆ at Q, where
Q ∈ ∆ is a rank n quadric. We may suppose that N = 〈Q,Q1, Q2, Q3〉,
Qi = (qiab)a,b, and that Q has the form

Q =




0 0 . . . 0
0 1 . . .
...

. . .

0 0 . . . 1


 .
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Let (t1, t2, t3) be local coordinates on N around Q. The local equation of ∆
at Q is

∆ = {(t1, t2, t3) : det(Q+
3∑

i=1

tiQi) = 0},

and its linear term defines the tangent space TQ∆; hence

TQ∆ = {(t1, t2, t3) :
3∑

i=1

tiq
i
00 = 0}

is the vector space of quadrics in N containing the singular point P =
(1, 0, . . . , 0) of Q. This shows that

Q ∈ ∆ is a smooth point ⇐⇒ P is not a base point of N.

Lemma 3.2.4. K ′ \ S ′ and K ′′ \ S ′′ are smooth.

Proof: Consider the web p′(M) on Pm+1
x . Suppose that Q′ ∈ K ′ \ S ′, i.e.,

rank Q′ = m + 1. By Remark 3.2.3, we have to show that Sing(Q′) = {P ′
0}

is not a base point of p′(M). As the quadrics in p′(M) are obtained by
restricting the quadrics in M to Pm+1

x , we have Bs(p′(M)) = Bs(M)∩Pm+1
x =

X ∩ Pm+1
x . One easily checks that Sing(Q′) = Sing(Q) ∩ Pm+1

x ; hence P ′
0 /∈

Bs(p′(M)) because Sing(Q)∩X = ∅. The same argument works for K ′′ \S ′′.
�

Lemma 3.2.5. If X = Xt with t ∈ U 0, then

(i) C is connected.

(ii) TQK
′ and TQK

′′ intersect transversally at every point Q ∈ C.

So C is a smooth, irreducible curve.

Proof: (i) follows from the Lefschetz hyperplane theorem. For (ii) we note
that if Q ∈ C, then rank Q′ = rank Q′′ = m + 1; hence K ′ and K ′′ are
smooth at Q by Lemma 3.2.5. We may assume that

Q′ = Q′′ =




0 0 . . . 0
0 1
...

. . .

0 1


 .
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If TQK
′ and TQK

′′ do not intersect transversally they coincide. This means
that there exists some λ ∈ C∗ such that (qi00)

′′ = λ(qi00)
′ for i = 1, 2, 3. It

follows that the variety Xt defined by the equations

m+1∑

i=1

x2
i +

m+1∑

i=1

y2
i = 0

m+1∑

a,b=0

(qiab)
′xaxb +

m+1∑

a,b=0

(qiab)
′′yayb = 0 i = 1, 2, 3

has a singular point at (1, 0, . . . , 0,
√

−1
λ
, 0, . . . , 0), contradiction. �

Remark 3.2.6. The previous lemma shows that if t ∈ U 0, C = Ct is a
smooth complete intersection of two surfaces of degree m+2 in P3; the genus
of C is m3 + 4m2 + 4m+ 1.

We define

Lm+2
2m+2(X) = {(Q,Λ) ∈ L2m+2(X) ×G(m+ 3, 2m+ 4) : Λ ⊂ V (Q)}.

The fiber over Q of the natural projection map

f : Lm+2
2m+2(X) → L2m+2(X) = S ′ ∪ S ′′ ∪ C

is the Fano variety Fm+2(Q) of (m+2)–planes contained in Q; it is a smooth
variety of dimension

(
m+1

2

)
that has one connected component if rank Q =

2m+1 and two connected components if rank Q = 2m+2. The components
of Fm+2(Q) are rational, since they can be covered by open sets Uα that are
isomorphic to the affine space of skew–symmetric (m+1)×(m+1)–matrices.
Consider the Stein factorization

LC(X)
g−→ C̃

h−→ C

of the restriction of f : Lm+2
2m+2(X) → L2m+2(X) to LC(X) = f−1(C). If

X = Xt, t ∈ U0, then h : C̃t → Ct is an unramified double covering and C̃t
is smooth. There is a natural involution σ′ on C̃ that interchanges the two
rulings of (m+ 2)–planes.

Remark 3.2.7. The involution σ′ on C̃ need not be induced by the involu-
tion σ on P2m+3. To see this, note that a quadric Q ⊂ P2m+3 of rank 2m+2 is
a cone over a smooth quadric Q̂ ⊂ P2m+1. By a suitable choice of coordinates
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we may assume that this P2m+1 is given by x0 = y0 = 0 and that Q̂ is defined
by

m+1∑

i=1

x2
i +

m+1∑

i=1

y2
i = 0.

Consider the m–planes

Λ1 = V (x1 +
√
−1y1, . . . , xm+1 +

√
−1ym+1)

and
Λ2 = V (x1 −

√
−1y1, . . . , xm+1 −

√
−1ym+1).

These two m–planes Λ1 and Λ2 are contained in Q̂ and belong to the same
ruling if and only if dim (Λ1 ∩ Λ2) ≡ m(mod 2). Since Λ1 and Λ2 do not
intersect, they belong to different rulings if and only if m is even (e.g. in
Bardelli’s case m = 2). Taking the span of Λ1 (resp. Λ2) with the one–
dimensional vertex of Q we obtain an (m+ 2)–plane Λ′

1 (resp. Λ′
2) in P2m+3

given by the same equations. The planes Λ′
1 and Λ′

2 are permuted by the
involution σ, but they belong to the same ruling of Q if m is odd.

The idea of the proof of the next result is taken from a paper of Tyurin
[Ty2]. A linear subspace of maximal dimension contained in a quadric is
called a generator.

Lemma 3.2.8. If t ∈ U 0 is general, then C̃t is irreducible.

Proof: Let ∆̃1,1 be the smooth variety introduced in the proof of Lemma
3.2.1. Consider the correspondence

I = {((Q, p′, p′′), L) ∈ ∆̃1,1 ×G(m+ 1, 2m+ 4) : 〈p′, p′′, L〉 ⊂ V (Q)}

with projections π1 : I → ∆̃1,1 and π2 : I → G(m+ 1, 2m+ 4). Let

I −→ Gen
p−→ ∆̃1,1

be the Stein factorization of π1. The double covering p : Gen → ∆̃1,1 corre-
sponds to the choice of a system of generators on a quadric Q of corank at
least two; it is ramified over ∆̃1,1∩p−1

1 (∆3). As the projection p1 : ∆̃1,1 → ∆1,1

induces an isomorphism

∆̃1,1 \ (∆̃1,1 ∩ p−1
1 (∆3))

∼−→ ∆1,1 \ (∆1,1 ∩ ∆3),

there is a unique lifting Ct ⊂ ∆̃1,1 of Ct if t ∈ U 0. I do not know whether
Gen is irreducible, but for our purposes it suffices to exhibit an irreducible
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surface SGen containing C̃t. Let K ⊃ M be a 4–plane in P(V ) such that
W = Bs(K) is smooth and such that K intersects the loci ∆2,1 and ∆1,2 in
a finite number of points but does not meet ∆4. Set Y ′ = K ∩ ∆1,0 and
Y ′′ = K ∩ ∆0,1. The surface

S = K ∩ ∆1,1 = Y ′ ∩ Y ′′

has a finite number of ordinary double points. Set S̃ = p−1
1 (S) ⊂ ∆̃1,1.

Claim. p1 : S̃ → S is the desingularization of S.

To prove the Claim, we consider a singular point Qs ∈ S with Qs ∈
∆2,1 \ (∆2,1 ∩∆4). In this case SingQ′

s = `′ is a line and SingQ′′
s = {p′′} is a

point. To show that S̃ is obtained by blowing up the double points of S we
have to identify the fiber p−1

1 (Qs) ∼= `′ with the projectivized tangent cone
PTCQs

S. We may assume that

Q′
s =




0 0 0 . . . 0
0 0 0 . . . 0
0 0 1
...

...
. . .

...
0 0 . . . 1



, Q′′

s =




0 0 . . . 0
0 1
...

. . .
...

0 . . . 1


 .

Consider the universal family

Q(W ) = {(λ, x) ∈ K × P2m+3 : x ∈ Qλ}

of quadrics in K, defined by the equation λ0Q0(x) + . . . + λ4Q4(x) = 0.
One readily verifies that Q(W ) is smooth since W is smooth. Let ti = λi

λ0

(i = 1, . . . , 4) be affine coordinates on K around Qs = Q0. The quadric
Qt = Q0 + t1Q1 + . . .+ t4Q4 decomposes as Qt = Q′

t +Q′′
t , where

Q′
t =




4∑
k=1

(qk00)
′tk

4∑
k=1

(qk01)
′tk . . . . . .

4∑
k=1

(qk01)
′tk

4∑
k=1

(qk11)
′tk . . . . . .

. . . . . . 1 +
4∑

k=1

(qk22)
′tk . . .

...
. . .




and

Q′′
t =




4∑
k=1

(qk00)
′′tk . . . . . . . . .

. . . 1 +
4∑

k=1

(qk11)
′′tk . . . . . .

...
. . .



.
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Since W = Bs(K) is smooth, the system of equations

(q1
00)

′x2
0 + 2(q1

01)
′x0x1 +(q1

11)
′x2

1 + (q1
00)

′′y2
0 = 0

...

(q4
00)

′x2
0 + 2(q4

01)
′x0x1 +(q4

11)
′x2

1 + (q4
00)

′′y2
0 = 0

has no non–trivial solutions; hence we may assume that




(q1
00)

′ (q1
01)

′ (q1
11)

′ (q1
00)

′′

...
...

...
...

(q4
00)

′ (q4
01)

′ (q4
11)

′ (q4
00)

′′


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The tangent cone TCQs
Y ′ is defined by the equation t1t3−t22 = 0; the tangent

space TQs
Y ′′ is defined by t4 = 0. Hence

TCQs
S = TCQs

Y ′ ∩ TQs
Y ′′

is the cone in TQs
Y ′′ ∼= C3 given by t1t3 − t22 = 0. The restriction of Qt ∈ K

to `′ is the quadric defined by

t1x
2
0 + 2t2x0x1 + t3x

2
1 = 0.

In this way the net of quadrics on `′ can be identified with the projective space
P2 with coordinates (t1, t2, t3) and the projectivized tangent cone PTCQs

S is
identified with the plane conic of degenerate quadrics on `′. The identification
of `′ with PTCQs

S is then given by the Veronese embedding of `′ in P2. This
proves the Claim.

Set SGen = p−1(S̃) ⊂ Gen. Since the double covering SGen → S̃ is
ramified along a smooth divisor D (the union of the exceptional divisors)
SGen is smooth and connected, hence irreducible. If we compose the maps p
and p1 with the inclusion of S in K, we obtain a morphism f : SGen → K
such that C̃t = f−1(Mt). Bertini’s theorem shows that C̃t is irreducible if the
web Mt is general; see [FL, Thm. 1.1]. �

Remark 3.2.9. One can also try to show the irreducibility of C̃t using a
degeneration argument, as in [Bar]. The idea is to construct a one–parameter
family {Mt} of webs in P(V ) such that Mt ∩ ∆3 = ∅ for t 6= 0, and such
that M0 ∩ ∆3 = M0 ∩ (∆2,1 \ ∆4) consists of one point. Let {Ct} be the
corresponding family of curves. The curves Ct are smooth for t 6= 0, and
C0 has one ordinary double point Q0. Let {C̃t} be the associated family of
double coverings. Since h : C̃t → Ct is unramified for t 6= 0, C̃t is smooth.
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The double covering h : C̃0 → C0 is ramified over Q0, and h−1(Q0) consists
of one point Q̃0. If one can show that OC̃0,Q0

contains no nilpotent elements

then h0(OC̃0
) = 1, since C̃0 is connected. By semicontinuity and flatness it

then follows that h0(OC̃t
) = 1 for general t, and hence for all t. Thus it would

follow that C̃t is irreducible for t 6= 0.

A point P = (Q,Λ) ∈ Lm+2
2m+2(X) defines an algebraic cycle ZP = Λ ∩X

on X.

Lemma 3.2.10. If t ∈ U and P = (Q,Λ) ∈ LC(Xt) are general points, then
dim ZP = m− 1. Moreover, ZP is smooth.

Proof: In the product

G(m+ 3, 2m+ 4) × P(V ) ×G(3, V ) ×G(4, V )

we have a correspondence

I = {(Λ, Q, π,M) : Λ ⊂ V (Q), Q ∈M \ π}.

Set

T = {(Λ, Q, π,M) ∈ I : Λ intersects Bs(π) non–transversally}.

By Bertini’s theorem, T is a Zariski closed subset of I. Choose three quadrics
Q1, Q2 and Q3 in V such that Y =

⋂3
i=1 V (Qi) is smooth, and choose an

(m+ 2)–plane W ⊂ P2m+3 that meets Y , Pm+1
x and Pm+1

y transversely. Since

h0(P2m+3, IW (2)) =

(
2m+ 5

2

)
−

(
m+ 4

2

)
,

the two subspaces P(V ) and PH0(P2m+3, IW (2)) of P(Ṽ ) intersect in a linear
subspace of dimension at least d, where

d ≥ (m+ 2)(m+ 3) −
(
m+ 4

2

)
− 1 =

m(m+ 3)

2
− 1.

Hence dim (P(V ) ∩ PH0(P2m+3, IW (2))) ≥ 4 if m ≥ 2, and we can choose
a σ–invariant quadric Q0 that satisfies the following conditions: Q0 is not
contained in π0 = 〈Q1, Q2, Q3〉, V (Q0) ⊃W and X0 = Y ∩V (Q0) is smooth.
By construction Z = W ∩ X0 = W ∩ Y is smooth of dimension m − 1.
Set M0 = 〈Q0, . . . , Q4〉. Since (W,Q0, π0,M0) ∈ I \ T , the assertions of the
Lemma follow. �
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Let P (x) be the Hilbert polynomial of a smooth complete intersection of
m+ 1 hyperplanes and three quadrics in P2m+3. Lemma 3.2.10 shows that if
X = Xt, t ∈ U general, there exist a Zariski open subset LC(X)0 ⊂ LC(X)

and a well–defined map i : LC(X)0 → Hilb
P (x)
X to the Hilbert scheme of

subschemes of X with Hilbert polynomial P (x).

Lemma 3.2.11. If X = Xt, t ∈ U0 general, then the map i : LC(X)0 →
Hilb

P (x)
X is injective.

Proof: If Z = Λ∩X ∈ i(LC(X)0), then Z is a complete intersection of three
quadrics in Λ and Λ is spanned by Z. As the intersection

M ∩ PH0(P2m+3, IΛ(2)) ⊂ L2m+2(X)

is a nonempty linear subspace of P(V ) and L2m+2(X) = S ′∪S ′′∪C contains
no linear subspaces of dimension one, the quadric Q containing Λ is also
uniquely determined. �

Lemma 3.2.12. If X = Xt, t ∈ U , then X is contained in a smooth com-
plete intersection Y =

⋂3
i=1 V (Q̃i) of three σ–invariant quadrics.

Proof: Consider the map

ν : P2m+3 → P(V ∨), ν(x, y) = {Q ∈ P(V ) : Q(x, y) = 0}

and denote its image by W ⊂ P(V ∨). Note that W ∼= P2m+3/ < σ > and
Sing(W ) ∼= ν(Pm+1

x qPm+1
y ). One has ν(X) = W∩L, L = Ann〈Q0, . . . , Q3〉 ⊂

P(V ∨). Choose a linear subspace L′ ⊂ P(V ∨) of codimension 3 containing
L such that L′ meets W transversally in a variety Y ′ of dimension 2m, and
such that it meets Sing(W ) transversally in a variety of dimension m−2. Set
Y = ν−1(Y ′). By construction, Y \ (Y ∩ Fix(σ)) is smooth. The symmetric
bilinear form Qi decomposes as Qi(x, y) = Q′

i(x)+Q′′
i (y). The tangent space

to Y ∩ Pm+1
x at a point (x, 0) ∈ Y ∩ Pm+1

x is given by

m+1∑

j=0

∂Q′
i

∂xj
(x, 0)xj = 0, i = 1, 2, 3.

By assumption, Y intersects Pm+1
x transversally in (x, 0). Hence, the linear

forms defining T(x,0)Y are independent and Y ⊂ P2m+3 is smooth at (x, 0).
In a similar way we show that Y ∩ Pm+1

y is smooth. �
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3.3 Infinitesimal Abel–Jacobi map

In this section we show that the Abel–Jacobi map associated to the family
of codimension m–cycles parametrized by C̃t is non–trivial. Using a special-
ization argument we extend this result to general complete intersections of
four quadrics.

Let X = Xt, t ∈ U0 general. By Lemma 3.2.12, we can choose a smooth
complete intersection Y =

⋂3
i=1 V (Q̃i), Q̃i ∈ V , with Y ⊃ X. The variety

X corresponds to a web M ⊂ P(V ), and Y corresponds to a net N ⊂ M .
The intersection of C ⊂ L2m+2(X) and N in M consists of a finite number of
points. Choose a point Q̂ ∈ C \ (C ∩N) such that M = 〈Q̃1, Q̃2, Q̃3, Q̂〉 and
an (m+ 2)–plane Λ ⊂ Q̂ such that P = (Q̂,Λ) ∈ LC(X)0, i.e., ZP is smooth
of dimension m−1. This is possible by Lemma 3.2.10. Let P̃ = g(P ) ∈ C̃ be
the image of P under the map g : LC(X) → C̃ that was obtained by Stein
factorization from f : LC(X) → C.

We denote the Abel–Jacobi map on X by ψX : CHm
hom(X) → Jm(X).

The choice of a base point P0 = (Q0,Λ0) ∈ LC(X)0 determines a map

ΦX : LC(X)0 −→ Jm(X)

that sends P to ψX(ZP − ZP0). Since ΦX is constant along the fibers of
g : LC(X)0 → C̃, it induces a map

ψ : C̃ −→ Jm(X).

Set Z = ZP . The infinitesimal Abel–Jacobi mapping (ΦX)∗ factorizes as
follows:

TPLC(X)0 i∗−→ TZHilb
P (x)
X

∼−→ H0(Z,NZ,X)
Φ∗−→ Hm(X,Ωm−1

X ).

The computation of the codifferential Φ∨
∗ is given by the following Lemma,

which is a slight modification of a result of Welters [Wel] (see also [C2]).

Lemma 3.3.1. The codifferential Φ∨
∗ fits into a commutative diagram with

exact columns

Hm−2(Ωm+1
X ⊗NX,Y )

γ−→ Hm−2(
∧m−2NZ,X ⊗ (NX,Y ⊗KX)|Z)yδ

yα

Hm−1(Ωm
X)

Φ∨
∗−→ Hm−1(KZ ⊗N∨

Z,X)y
yβ

Hm−1(Ωm+1
Y ⊗NX,Y ) −→ Hm−1(

∧m−1NZ,Y ⊗KX |Z).



68

Proof: Griffiths [Gr1, Thm. 2.25] showed that

Φ∨
∗ : Hm−1(X,Ωm

X) → Hm−1(Z,KZ ⊗N∨
Z,X)

‖ ‖
Hm(X,Ωm−1

X )∨ H0(Z,NZ,X)∨

is the composition of the restriction map

Hm−1(Ωm
X) → Hm−1(Ωm

X ⊗OZ)

and the map

Hm−1(Z,Ωm
X ⊗OZ) → Hm−1(Z,KZ ⊗N∨

Z,X).

The latter is induced by the exact sequence
∧2N∨

Z,X ⊗ Ωm−2
X → Ωm

X ⊗OZ → KZ ⊗N∨
Z,X → 0

that comes from the filtration on Ωm
X⊗OZ obtained by taking exterior powers

in
0 → N∨

Z,X → Ω1
X ⊗OZ → Ω1

Z → 0.

Consider the commutative diagram with exact rows and columns

(*)
0 0
↓ ↓
TZ = TZ
↓ ↓

0 → TX ⊗OZ → TY ⊗OZ → NX,Y ⊗OZ → 0
↓ ↓ ‖

0 → NZ,X → NZ,Y → NX,Y ⊗OZ → 0
↓ ↓
0 0.

Taking exterior powers in both horizontal sequences and tensoring with KX⊗
OZ , we obtain a commutative diagram of short exact sequences
∧m−1TX ⊗KX |Z → ∧m−1TY ⊗KX |Z → ∧m−2TX ⊗NX,Y ⊗KX |Z

↓ ↓ ↓∧m−1NZ,X ⊗KX → ∧m−1NZ,Y ⊗KX |Z → ∧m−2NZ,X ⊗NX,Y ⊗KX .

The adjunction formula shows that
∧m−1NZ,X ⊗KX ⊗OZ

∼= KZ ⊗N∨
Z,X∧m−1TY ⊗KX

∼=
∧m−1TY ⊗KY ⊗NX,Y = Ωm+1

Y ⊗NX,Y .

If we compose the vertical maps in the previous commutative diagram with
the restriction map OX → OZ and take the associated long exact sequences
in cohomology, the assertion follows. �
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Lemma 3.3.2. The map

γ : Hm−2(X,Ωm+1
X ⊗NX,Y ) → Hm−2(Z,

∧m−2NZ,X ⊗NX,Y |Z ⊗KX |Z)

is surjective.

Proof: We argue by induction. Set a = m − k. From (∗) we obtain a
commutative diagram

Ha−1(∧a−1TX ⊗N⊗k
X,Y ⊗KX) −→ Ha(∧aTX ⊗N

⊗(k−1)
X,Y ⊗KX)yγk+1

yγk

Ha−1(∧a−1NZ,X ⊗N⊗k
X,Y ⊗KX)

δk−→ Ha(∧aNZ,X ⊗N
⊗(k−1)
X,Y ⊗KX).

The map δk is the connecting homomorphism in the long exact cohomology
sequence associated to the short exact sequence

0 → ∧m−kNZ,X → ∧m−kNZ,Y → ∧m−k−1NZ,X ⊗NX,Y → 0

tensored by N
⊗(k−1)
X,Y ⊗KX |Z . To show that δk is surjective for k = 2, . . . ,m−1

it suffices to show that

Hm−k(Z,
∧m−kNZ,Y ⊗N

⊗(k−1)
X,Y ⊗KX |Z) = 0

for k = 2, . . . ,m− 1. Since

KX
∼= OX(−2m+ 4), NZ,Y

∼=
⊕m+1 OZ(1) and NX,Y

∼= OX(2),

it suffices to show that

Hm−k(Z,OZ(k −m+ 2)) = 0.

As Z = V (2, 2, 2) ⊂ Λ, Λ ∼= Pm+2, there is a resolution

0 → OΛ(−6) → ⊕3OΛ(−4) → ⊕3OΛ(−2) → OΛ → OZ → 0,

and the desired vanishing statement follows since m−k+3 ≤ m+1 < dim Λ.
By induction, it suffices to show that γm is surjective. the varieties X and
Z are complete intersections in P2m+3, hence they are projectively normal.
The surjectivity of γm thus follows from the commutative diagram

H1(X,TX)
γm−1−→ H1(Z,NZ,X)x

xδm−1

H0(X,OX(2))
γm−→ H0(Z,OZ(2)).

�
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Lemma 3.3.3. If P̃ ∈ C̃ is a general point, the map

ψ∗ : TP̃ C̃ → Hm(X,Ωm−1
X )

is nontrivial.

Proof: By Lemma 3.2.11 the irreducible componentH of Hilb
P (x)
X containing

Z has dimension at least
(
m+1

2

)
+ 1. Since TZH ∼= H0(Z,NZ,X), we have

h0(Z,NZ,X) ≥
(
m+1

2

)
+ 1. As

Hm−1(Z,
∧m−1NZ,Y ⊗KX ⊗OZ) ∼=

⊕(m+1
2 )Hm−1(Z,OZ(−m+ 3))

∼=
⊕(m+1

2 )Hm−1(Z,KZ),

it follows that hm−1(Z,
∧m−1NZ,Y ⊗KX ⊗OZ) =

(
m+1

2

)
; hence the commu-

tative diagram of Lemma 3.3.1 shows that kerβ 6= (0). Choose a nonzero
element ξ̂ ∈ ker β. Then there exists an element

ζ̂ ∈ Hm−2(Z,
∧m−2NZ,X ⊗ (NX,Y ⊗KX)|Z)

such that α(ζ̂) = ξ̂. By Lemma 3.3.2 there exists an element

η̂ ∈ Hm−2(X,Ωm+1
X ⊗NX,Y )

such that γ(η̂) = ζ̂. As Φ∨
∗ (δ(η̂)) = α(ζ̂) = ξ̂ 6= 0, the map Φ∨

∗ is non–trivial.
Hence, if ξ is dual to ξ̂ then Φ∗(ξ) 6= 0. As we can choose ξ in such a way
that ξ = i∗(χ) ∈ i∗TPLC(X)0, the commutative diagram

TPLC(X)0 i∗−→ H0(Z,NZ,X)yg∗

yΦ∗

TP̃ C̃
ψ∗−→ Hm(X,Ωm−1

X )

shows that
ψ∗(g∗χ) = Φ∗(ξ) 6= 0,

hence ψ∗ is non–trivial. �

Recall that there is a natural involution σ′ on C̃ that interchanges the
two rulings of (m+ 2)–planes. We define the mapping

ψ′ : C̃ −→ Jm(X)

by ψ′(P̃ ) = ψ(σ′(P̃ )) − ψ(P̃ ).

Lemma 3.3.4. If P̃ ∈ C̃ is a general point, then ψ′(P̃ ) 6= 0.

Proof: As σ′
∗ = − id, it follows that ψ′

∗ = ψ∗◦σ
′
∗ − ψ∗ = −2ψ∗. Therefore

the result follows from Lemma 3.3.3. �
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To extend the results on non–triviality of the Abel–Jacobi map to general
smooth complete intersections X =

⋂3
i=0 V (Qi), where the Qi need no longer

be σ–invariant, we use a specialization argument.

Lemma 3.3.5. If X ⊂ P2m+3 is a general smooth complete intersection of
four quadrics, the Abel–Jacobi map ψX is non–trivial.

Proof: Let D1 ⊂ P(Ṽ ) be the discriminant locus; it is stratified by irre-
ducible subsets

Di = {Q ∈ P(Ṽ ) : dim Sing(Q) ≥ i− 1}

of codimension
(
i+1
2

)
in P(Ṽ ). Let

J = {(Q, s,W ) ∈ P(Ṽ )×G(4, Ṽ )×G(m+ 3, 2m+ 4) : Q ∈Ms,W ⊂ V (Q)}

be a correspondence with projection p1 : J → P(Ṽ ). Let I = p12(J) ⊂
P(Ṽ ) ×G(4, Ṽ ) be the incidence correspodence, and let I0 be its restriction
to P(V )×G(4, V ). We denote the projections on the first factor by π1 : I →
P(Ṽ ) and π1,0 : I0 → P(V ); likewise we have projections π2 : I → G(4, Ṽ ) and
π2,0 : I0 → G(4, V ). Set M = p−1

1 (D2), L = π−1
1 (D2) and L0 = π−1

1,0(∆1,1).

For a quadric Q ∈ P(Ṽ ), the fiber π−1
1 (Q) is isomorphic to the Grassmann

variety G(3, H) of 3–dimensional linear subspaces contained in a hyperplane
H ⊂ Ṽ . Hence all the fibers of π1 are irreducible of constant dimension,
and L is irreducible. Choose two points t ∈ T and t0 ∈ U . Note that
π−1

2,0(t0) = Ct0, and that the general fiber π−1
2 (t) consists of finitely many

points (t, Qi), i = 1, . . . , δ; it follows from [HT] that δ = degD2 =
(
2m+5

3

)
.

Choose τ = (t, Q) ∈ π−1
2 (t) and τ0 = (t0, Q0) ∈ Ct0. Since L is irreducible,

we can connect the points τ and τ0 by an irreducible curve γ. As D3 has
codimension 3 in D2, we can arrange that γ ∩ π−1

1 (D3) = ∅.
Let M → L̃ h→ L be the Stein factorization of the projection p12 : M →

L. Since γ does not meet the ramification locus of h, it can be lifted to a curve
γ̃ ⊂ L̃ with beginpoint τ̃ and endpoint τ̃0 ∈ C̃t0. By Lemma 3.3.4 it follows
that ψ′(τ̃0) 6= 0 if τ̃0 is a general point of C̃t0. Set γ̂ = π2(γ) ⊂ G(4, Ṽ ). Let
ρ be the inverse of the isomorphism π2◦h : γ̃

∼→ γ̂. Define a normal function
ν over an open subset Û ⊂ γ̂ by ν(s) = ψ′

s(ρ(s)). Since ν(t0) = ψ′(τ̃0) 6= 0,
it follows that ν(t) 6= 0 for a general point t ∈ T . �

Theorem 3.3.6. If X = V (2, 2, 2, 2) ⊂ P2m+3 (m ≥ 2) is a very general
smooth complete intersection of four quadrics, then the image of the Abel–
Jacobi map ψX : CHm

hom(X) → Jm(X) is not contained in the torsion points
of Jm(X).
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Proof: We use the specialization argument of Lemma 3.3.5. If P̃ ∈ C̃ = C̃t0
is a general point, the map

ψ′
∗ : TP̃ C̃ → Hm(X0,Ω

m−1
X0

)

is non–trivial by Lemmas 3.3.3 and 3.3.4, hence ψ′ is non–torsion. Set

C̃n = {P̃ ∈ C̃ : nψ′(P̃ ) = 0}.

By Chow’s theorem, C̃n ⊂ C̃ is a Zariski closed subset. For every n ∈ N there
exists a Zariski closed subset Tn ⊂ T such that every point τ̃ ∈ h−1(π−1

2 (t))
specializes to a point τ̃0 ∈ C̃t0 with τ̃0 /∈ C̃n if t ∈ T \ Tn, and the assertion
follows. �

As an immediate consequence we find that the Griffiths group Griffm(X)
is non–torsion:

Corollary 3.3.7. If X is a very general smooth complete intersection of four
quadrics, then Griffm(X) ⊗ Q 6= 0.

Proof: Using the results in [DK, Exposé XI] we find that the Hodge structure
on H2m−1(X) has level three. A standard monodromy argument then shows
that Jmalg(Xt) = 0 for very general t (cf. [H1] or [Shi]). �



Chapter 4

Complete intersections in
Grassmann varieties

4.1 Introduction

One of the ingredients that we needed for the computations in Chapter 2
was the Bott vanishing theorem; it enabled us to interpret the variable co-
homology of a smooth complete intersection in projective space in terms of
the Jacobi ring. In principle, this theorem allows us to extend the results
of Chapter 2 to complete intersections in arbitrary compact homogeneous
Kähler manifolds. In this chapter we study the case of complete intersections
in Grassmann varieties. We start by recalling some results on cohomology
of homogeneous vector bundles in Section 4.2; these results are mainly in-
cluded for their use in the next chapter. In Section 4.3 we generalize the
main result of Chapter 2, using the abstract version of the Jacobi ring in-
troduced in Chapter 1 and the symmetrizer lemma. As before, let CHm(Y )0

denote the pullback of H2m
pr (Y ) under the cycle class map. The main re-

sult, Theorem 4.3.11, asserts that the image of the Abel–Jacobi map for a
very general complete intersection X = V (d0, . . . , dr) ⊂ Y = G(s, ` + 1)
of odd dimension 2m − 1 coincides (up to torsion) with the image of the
composed map CHm(Y )0 → CHm

hom(X) → Jm(X) if min(d0, . . . , dr) is suffi-
ciently large. The most natural way to prove this result is to consider the
infinitesimal invariants of normal functions, as in Chapter 2. This approach
is connected with a delicate problem; therefore we use a different method,
based on Nori’s results [No]. We do not obtain sharp degree bounds, as in
Chapter 2, because it is hard to work out the degree conditions imposed by
the Bott vanishing theorem. Therefore we investigate the case of complete
intersections in Grassmann varieties of lines in P` in more detail in Section
4.4; in this case, we obtain more precise degree bounds. We used the Maple
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package ’Schubert’ of S. Katz and S. A. Strømme for the computation of
Hodge numbers of complete intersections in Grassmann varieties.

4.2 Homogeneous vector bundles

For later use in this and the next chapter, we collect some results on homo-
geneous vector bundles. We refer to [FH] or [Hu] for basic facts concerning
representation theory. Let G be a connected and simply connected complex
Lie group, and let P ⊂ G be a parabolic subgroup. The quotient space
Y = G/P is a compact homogeneous space.

Definition 4.2.1. A holomorphic vector bundle π : E → Y over a homoge-
neous space Y = G/P is called homogeneous if

(i) There is a G–action on the total space of E such that the projection
map π is G–equivariant.

(ii) The map Ey → Eg.y induced by the action of G is an isomorphism of
vector spaces for all g ∈ G.

There is a 1–1 correspondence between homogeneous vector bundles over
Y = G/P and representations of P . A homogeneous vector bundle Eρ is
said to be irreducible if the corresponding representation ρ : P → W is
irreducible. Note that Γ(G/P,Eρ) = IndGP (W ) is the induced representation
of G.

Let R+ be the finite set of positive roots, and let T ⊂ G be a maximal
torus. Let B be the Borel subgroup generated by T and the negative root
groups. The Killing form induces an inner product ( , ) on the character
group Λ = Hom(T,C∗). A weight λ ∈ Λ is called singular if (λ, α) = 0 for
some positive root α ∈ R+. If λ is not singular, it is called regular and we
define

index(λ) = #{α ∈ R+ : (λ, α) < 0}.

The cohomology groups of irreducible homogeneous vector bundles can
be computed by the following theorem of Bott (see [Bott, Theorem IV ′]):

Theorem 4.2.2. Let P be a parabolic subgroup of a semisimple complex
Lie group G. Let Wλ be the irreducible P–module with highest weight λ
and let Eλ = G ×P Wλ the corresponding homogeneous vector bundle on
Y = G/P . Let δ =

∑
i λi be the sum of the fundamental dominant weights,

and let W be the Weyl group.
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(i) If λ+ δ is singular, then Hp(Y,Eλ) = 0 for all p ≥ 0.

(ii) If λ+ δ is regular, then

Hp(Y,Eλ) =

{
0 if p 6= index(λ+ δ)

Γµ−δ if p = index(λ+ δ),

where µ is the unique dominant weight in the W–orbit of λ + δ and Γµ−δ
denotes the irreducible G–module with highest weight µ− δ.

Bott’s theorem also allows us to calculate the cohomology groups of homoge-
neous vector bundles that are completely reducible, i.e., vector bundles that
correspond to representations of the reductive part of P .

In the remainder of this section we consider homogeneous vector bundles
over Grassmann varieties. Let V be a complex vector space of dimension
` + 1 with basis {e1, . . . , e`+1}. Set t = ` + 1 − s. The Grassmann variety
Y = G(s, V ) of s–dimensional linear subspaces of V is a homogeneous space
of the form Y = G/Pt, where G = SL(`+ 1,C) and

Pt =

{(
h1 0
h3 h4

)
: h1 ∈ GL(t,C), h4 ∈ GL(s,C), det(h1). det(h4) = 1

}
.

Since G(s, V ) ∼= G(`+1− s, V ∨), we may assume that 2s ≤ `− 1. Note that
dim G = s(`+ 1 − s) = st.

The root system of SL(` + 1,C) is R = {ei − ej : 1 ≤ i, j ≤ ` + 1}, and
the set of positive roots is R+ = {ei − ej : 1 ≤ i < j ≤ ` + 1}. The set of
simple roots is ∆ = {α1, . . . , α`}, where αi = ei − ei+1. We shall sometimes
denote the weight β1e1 + . . . + β`+1e`+1 by (β1, . . . , β`+1). For 1 ≤ i ≤ ` we
define λi = e1 + . . .+ ei. The set of dominant weights is

Λ+ = {
∑

i

niλi, ni ≥ 0 for all i = 1, . . . , `}.

Thus β = (β1, . . . , β`+1) is dominant if and only if β1 ≥ . . . ≥ β`+1. The
weights λ1, . . . , λ` are called the fundamental dominant weights.

Let T ⊂ SL(`+ 1,C) be the subgroup of diagonal matrices, and let B be
the Borel subgroup of lower triangular matrices. The reductive part of the
parabolic subgroup Pt is

Pred =

{(
h1 0
0 h4

)
: h1 ∈ GL(t,C), h4 ∈ GL(s,C), det(h1). det(h4) = 1

}
,

and the semisimple part of Pt is isomorphic to SL(t,C) × SL(s,C). The
weights of an irreducible representation of Pt are dominant for the semisimple
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part of Pt, i.e., they are of the form β = (β1, . . . , βt; βt+1, . . . , β`+1) with
β1 ≥ . . . ≥ βt and βt+1 ≥ . . . ≥ β`+1.

The vector bundles Ωq
Y are completely reducible. Their decomposition

is given by a theorem of Kostant [Kos]. Using the theorems of Bott and
Kostant, Snow has obtained a combinatorial criterion for the vanishing of
the groups Hp(Y,Ωq

Y (k)) (see [Sn, §3]): let (p1, . . . , ps) be a partition of q
with p1 ≤ . . . ≤ ps, and let (p′1, . . . , p

′
t) be the conjugate partition. These

data correspond to a Young diagram embedded in the s× t matrix of squares

N = {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ t},

where pi is the number of squares of the Young diagram in the ith row and
p′j is the number of squares in the jth column. To each square (i, j) of the
Young diagram we associate its hook length, i.e., the natural number

hij := pi + p′j − (s+ j − i);

the hook length hij is the sum of the number of squares (a, j) of the Young
diagram such that a ≥ i and the number of squares (i, b) such that b ≥ j,
where the square (i, j) itself is counted once (cf. [FH, p. 50], where a different
convention is used: the diagrams consist of rows of decreasing length).

Proposition 4.2.3.(Snow)

(i) If there exists a square (i, j) with hij = k for every diagram with q
squares embedded in the s×tmatrix of squaresN , thenHp(Y,Ωq

Y (k)) =
0 for all p ≥ 0.

(ii) Suppose that there exists a Young diagram with q squares that does
not contain a square (i, j) with hij = k. Then Hp(Y,Ωq

Y (k)) 6= 0, where
p is the number of squares (i, j) such that hij > k.

Example 4.2.4. Consider the Grassmann variety Y = G(3, 6) (s = t = 3).
We take q = 6. The diagram

1
3 1
5 3 1

associated to the partition (p1, p2, p3) = (1, 2, 3) shows that H3(Y,Ω6
Y (2)) 6=

0, H1(Y,Ω6
Y (4)) 6= 0.
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Theorem 4.2.5. (Snow) Let Y = G(s, ` + 1) be the Grassmann variety of
(s − 1)–dimensional linear subspaces of P`. Fix an integer k ≥ 1. Then
Hp(Y,Ωq

Y (k)) = 0 if one of the following conditions is satisfied:

(a) q > s(`+ 1 − s) − s, Y 6= G(2, 4).

(b) k ≥ min(q, `), p ≥ 1.

(b′) k ≥ min(q, `) − 1, p ≥ 2.

(c) sp ≥ (s− 1)q > 0.

Altough this result is sharp in the generality in which it is stated, it can
be improved for specific values of s and `. To illustrate this, we work out
the case s = 2 using Proposition 4.2.3. This result, previously obtained by
Konno [Ko3], will be used in Section 4.4.

Lemma 4.2.6. Let Y = G(2, `+1) be the Grassmann variety of lines in P`.
If p ≥ 1 and k ≥ 1 then

Hp(Y,Ωq
Y (k)) 6= 0 ⇐⇒ 3p− 1 < q < p+ ` and k = q − 2p+ 1.

Proof: We consider the Young diagrams associated to partitions (p, q − p)
with q − ` < p ≤ q. The only natural number 1 ≤ k ≤ q − p + 1 that may
not occur in the diagram is k = q − 2p+ 1. Since there exists a square (i, j)
with hij = q− 2p+ 1 if and only if p ≥ q− 2p+ 1, the assertion follows from
Proposition 4.2.3. �

4.3 Symmetrizer lemma

We consider smooth complete intersections X = V (d0, . . . , dr)∩Y inside the
Grassmann variety Y = G(s, ` + 1) (s ≥ 2). As in Chapter 2, the main tool
for studying the image of the Abel–Jacobi map is the symmetrizer lemma.
Since Y has no cohomology in odd degree, the Lefschetz hyperplane theorem
shows that the Abel–Jacobi mapping ψX is trivial if dim X is even. Thus we
may assume that n = dim X = 2m−1 is odd. Note that dim Y = s(`+1−s).
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Lemma 4.3.1. LetX = V (d0, . . . , dr)∩Y be a smooth complete intersection
in Y . Fix an integer p such that 0 ≤ p ≤ n = dim X. If

r∑

i=1

di ≥ min(n+ r − p+ 1, `) − 1 (r > 0)

d0 ≥ min(n+ r − p+ 2, `) − 1 (r = 0).

then there is an exact sequence

0 → Hn−p+1,p
pr (Y ) → Rp,d(X) → Hn−p,p

var (X) → 0.

Proof: We verify the conditions (1)–(4) of Lemma 1.3.7. The desired state-
ment then follows from Corollary 1.3.9. The strongest condition on k needed
to guarantee the vanishing Ha(Y,Ωb

Y (k)) = 0 in Theorem 4.2.5 occurs if
b ≤ n + r + 1 − s is chosen to be maximal with respect to a. The case
a = 1 can only occur in condition (3) of Lemma 1.3.7, since otherwise
b = n + r > n + r + 1 − s. As the conditions that (1)–(4) impose on
the degrees become weaker as ν increases, it suffices to treat the case ν = 0
(unless r = 0, in which case we take ν = 1 in condition (4) ). Theorem 4.2.5
shows that (4) is satisfied if the conditions of the Lemma are fulfilled, and
the conditions (1)–(3) of Lemma 1.3.7 are weaker. �

Lemma 4.3.2. The conclusion of Lemma 4.3.1 holds for all p ≥ m− 2 if
∑

i=min(1,r)

di ≥ `− 1.

Proof: The strongest condition occurs if we take p = m−2 in Lemma 4.3.1.
The conditions then read

r∑

i=1

di ≥ min(m+ r + 2, `) − 1

d0 ≥ min(m+ 3, `) − 1.

We then simply note that m+ r + 2 ≥ ` for all r ≥ 0:

m+ r + 2 ≥ ` ⇐⇒ 2m+ 2r + 4 ≥ 2`

⇐⇒ s(`+ 1 − s) + r + 4 ≥ 2`

⇐⇒ (s− 2)`+ s(1 − s) + r + 4 ≥ 0,

and since ` ≥ 2s− 1, it suffices to show that

(s− 2)(2s− 1) + s(1 − s) + r + 4 = (s− 2)2 + r + 2 ≥ 0.

�
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As in Chapter 2, we define E =
⊕r

i=0OY (di) and denote the associated
projective bundle P(E∨) by P . In Chapter 1, we defined the Jacobi ring R
as the quotient of the ring

S =
⊕

p,q≥0H
0(P,K⊗q

P ⊗ ξp+1
E )

by the Jacobi ideal J . In Remark 1.3.8 we defined a natural bigrading on S
and R. Using the multi–index notation from Chapter 2, we note that

Sp,d(X) = H0(Y,KY ⊗ detE ⊗ SpE)
∼=

⊕
I:|I|=pH

0(Y,OY (d(X) + 〈d, I〉 ))

where d(X) = d0 + . . .+ dr − `− 1.

Lemma 4.3.3. (symmetrizer lemma) The complex
∧2S1,0 ⊗Rp−2,d(X) → S1,0 ⊗ Rp−1,d(X) → Rp,d(X)

is exact at the middle term if p ≥ 2 and

(1)
r∑
i=0

di + (p− 2)dr ≥ `+ 2

(2)
r∑
i=1

di + (p− 1)dr ≥ `+ 1.

As in Chapter 2, a diagram chase shows that the symmetrizer lemma
follows if we prove that

(i) The complex
∧2S1,0 ⊗ Sp−2,d(X) → S1,0 ⊗ Sp−1,d(X) → Sp,d(X)

is exact at the middle term.

(ii) The map
S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

is surjective.

The statements (i) and (ii) are proved in Lemmas 4.3.4 – 4.3.6. The idea
for proving (i) is to relate this statement to the corresponding statement
for projective space by the Plücker embedding of Y in PN = P(∧sV ); cf.
[Ko1, Lemma 7.1.6]. Let IY = ⊕kIk be the ideal of Y in PN . The Plücker
embedding is projectively normal, and the ideal IY is generated by quadrics
[HP, VII, §7, Thm. I]. Define Ẽ =

⊕r
i=0OPN (di) and set

S̃a,b = H0(PN , SaẼ ⊗OPN (b)).



80

Lemma 4.3.4. The complex
∧2S1,0 ⊗ Sp−2,d(X) → S1,0 ⊗ Sp−1,d(X) → Sp,d(X)

is exact at the middle term if condition (1) of Lemma 4.3.3 is satisfied and
p ≥ 2.

Proof: Consider the commutative diagram with exact columns

0 0 0y
y

y
ker r3 −→ ker r2 −→ ker r1y

y
y∧2S̃1,0 ⊗ S̃p−2,d(X) −→ S̃1,0 ⊗ S̃p−1,d(X) −→ S̃p,d(X)yr3

yr2

yr1

∧2S1,0 ⊗ Sp−2,d(X) −→ S1,0 ⊗ Sp−1,d(X) −→ Sp,d(X)y
y

y
0 0 0

where the maps r1, r2 and r3 are restriction maps. The desired statement
follows by a diagram chase if

(i) The complex
∧2S̃1,0 ⊗ S̃p−2,d(X) → S̃1,0 ⊗ S̃p−1,d(X) → S̃p,d(X)

is exact at the middle term.

(ii) ker r2 → ker r1 is surjective.

The first statement follows from Lemma 2.3.4 with k = d(X) if condition
(1) of Lemma 4.3.3 is satisfied; note that the ring S̃ was denoted by S in
Chapter 2. For the second statement, we note that

ker r1 =
⊕

J :|J |=pId(X)+〈d,J〉

and
ker r2 ⊇ S̃1,0 ⊗ (

⊕
I:|I|=p−1 Id(X)+〈d,I〉).

Thus it suffices to show that the map

S̃1,0 ⊗ Id(X)+〈d,I〉 → Id(X)+〈d,I+(i)〉

is surjective for all multi–indices I with |I| = p− 1 and for all i ∈ {0, . . . , r}.
Since the ideal IY is generated in degree two, this follows if d(X)+ 〈d, I〉 ≥ 2
for all multi–indices I with |I| = p− 1. Hence the condition

r∑

i=0

di + (p− 1)dr ≥ `+ 3

is sufficient; it is weaker than condition (1) of Lemma 4.3.3. �
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Lemma 4.3.5. The map

H0(Y, TY ) ⊗H0(Y,OY (a)) → H0(Y, TY (a))

is surjective for all a ≥ 0.

Proof: (cf. [Ko1]) The tangent bundle TY is the homogeneous vector
bundle that corresponds to the adjoint representation, with highest weight
λ = λ1 + λ`, of the parabolic subgroup Pt on g/p; see [Weh] or [Kü]. The
line bundle OY (a) corresponds to the character χ : P → Cµ. Hence Ad ⊗ µ
is the irreducible representation of Pt with highest weight λ1 + a.λt+λ`, and
the induced representation H0(Y, TY (a)) is the irreducible representation of
SL(`+ 1,C) with lowest weight −λ1 − a.λt − λ`. Since the map

H0(Y, TY ) ⊗H0(Y,OY (a)) → H0(Y, TY (a))

is a nontrivial homomorphism of SL(`+1,C)–modules, it must be surjective.
�

We investigate the second condition that is needed for the proof of the
symmetrizer lemma. Let Σ be the bundle of first order differential operators
on sections of the line bundle ξE.

Lemma 4.3.6. The map S1,0 ⊗ Jp−1,d(X) → Jp,d(X) is surjective if the condi-
tions (1) and (2) of Lemma 4.3.3 are satisfied and p ≥ 2.

Proof: There is a commutative diagram

H0(P, ξE) ⊗H0(P,Σ ⊗KP ⊗ ξp+r−1
E )

µ̃−→ H0(P,Σ ⊗KP ⊗ ξp+rE )y
y

S1,0 ⊗ Jp−1,d(X)
µ−→ Jp,d(X)

where the vertical arrows are surjective by definition. Thus it suffices to show
that the map µ̃ is surjective. To this end, consider the commutative diagram

0 0y
y

S1,0 ⊗H0(P,KP ⊗ ξp+r−1
E )

µ1−→ H0(P,KP ⊗ ξp+rE )y
y

S1,0 ⊗H0(P,Σ ⊗KP ⊗ ξp+r−1
E )

µ̃−→ H0(P,Σ ⊗KP ⊗ ξp+rE )y
y

S1,0 ⊗H0(P,Ωn+2r
P ⊗ ξp+r−1

E )
µ2−→ H0(P,Ωn+2r

P ⊗ ξp+rE )y
y

0 0
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that is induced by the exact sequence 0 → OP → Σ → TP → 0. A diagram
chase shows that µ is surjective if the maps µ1 and µ2 are surjective. The
map µ1 is surjective if and only if

H0(Y,E) ⊗H0(Y,KY ⊗ detE ⊗ Sp−2E) → H0(Y,KY ⊗ detE ⊗ Sp−1E)

is surjective. This follows if d(X)+(p−2)dr ≥ 0, and this condition is weaker
than condition (1) of Lemma 4.3.3. The exact sequence of tangent bundles

0 → Tv → TP → π∗TY → 0

induces a short exact sequence

0 → π∗KY ⊗ Ωr−1
v → Ωn+2r

P → π∗Ωn+r
Y ⊗ Ωr

v → 0, (4.1)

and from the relative Euler sequence (1.6) we obtain a short exact sequence

0 → π∗
∧r+1E ⊗ ξ−r−1

E → π∗
∧rE ⊗ ξ−rE → Ωr−1

v → 0.

Hence

H1(P, π∗KY ⊗ Ωr−1
v ⊗ ξp+r−1

E ) = H1(P, π∗KY ⊗ Ωr−1
v ⊗ ξp+rE ) = 0,

and from the sequence 4.1 we obtain a commutative diagram with exact
columns

0 0y
y

S1,0 ⊗H0(P, π∗KY ⊗ Ωr−1
v ⊗ ξp+r−1

E )
ν1−→ H0(P, π∗KY ⊗ Ωr−1

v ⊗ ξp+rE )y
y

S1,0 ⊗H0(P,Ωn+2r
P ⊗ ξp+r−1

E )
µ2−→ H0(P,Ωn+2r

P ⊗ ξp+rE )y
y

S1,0 ⊗H0(P, π∗Ωn+r
Y ⊗ Ωr

v ⊗ ξp+r−1
E )

ν2−→ H0(P, π∗Ωn+r
Y ⊗ Ωr

⊗ξ
p+r
E )y

y
0 0.

This diagram shows that µ2 is surjective if ν1 and ν2 are surjective. The map
ν1 is surjective if

H0(Y,E) ⊗H0(Y,KY ⊗ ∧rE ⊗ Sp−1E) → H0(Y,KY ⊗ ∧rE ⊗ SpE)

is surjective; this follows if condition (2) of Lemma 4.3.3 is satisfied. The
map ν2 is surjective if and only if

H0(Y,E) ⊗H0(Y,Ωn+r
Y ⊗ detE ⊗ Sp−2E) → H0(Y,Ωn+r

Y ⊗ detE ⊗ Sp−1E)

is surjective. As Ωn+r
Y = TY ⊗KY , this follows from Lemma 4.3.5 if condition

(1) of Lemma 4.3.3 is satisfied. �
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Lemma 4.3.7. Suppose that the conditions (1)–(4) of Lemma 1.3.7 are sa-
tisfied for b− 1 ≤ p ≤ b+ 1. Then there is a commutative diagram

H2m−b(Ωb
Y,Xt

) → Ω1
U,t ⊗H2m−b+1(Ωb−1

Y,Xt
) → Ω2

U,t ⊗H2m−b+2(Ωb−2
Y,Xt

)
↓ ↓ ↓

R∨
b,d(X) → S∨

1,0 ⊗R∨
b−1,d(X) → ∧2S∨

1,0 ⊗R∨
b−2,d(X)

where the verical arrows are isomorphisms.

Proof: We shall only give a brief outline of the proof, and leave the details
to the reader. We have a commutative diagram

H2m−b(Ωb
Y,Xt

) −→ H2m−b+r(Ωb+r
P,Xt

)y
y

Ω1
T,t ⊗H2m−b+1(Ωb−1

Y,Xt
) −→ Ω1

T,t ⊗H2m−b+r+1(Ωb+r−1
P,Xt

)y
y

Ω2
T,t ⊗H2m−b+2(Ωb−2

Y,Xt
) −→ Ω2

T,t ⊗H2m−b+r+2(Ωb+r−2
P,Xt

).

Using the duality between H i(P,Ωj
P,Xt

) and Hn+2r+1−i(P,Ωn+2r+1−j
P (logXt))

(cf. Remark 1.2.3), it suffices to show that the diagram

∧2S1,0 ⊗Rb−2,d(X)
id⊗fb+r−2−−−−−−−→ ∧2Tt ⊗Hb+r−2(Ω2m−b+r+2

P (logXt))ya2

yd2

S1,0 ⊗Rb−1,d(X)
id⊗fb+r−1−−−−−−−→ Tt ⊗Hb+r−1(Ω2m−b+r+1

P (logXt))ya1

yd1

Rb,d(X)
id⊗fb+r−−−−−→ Hb+r(Ω2m−b+r

P (logXt))

is commutative; the maps δ2 and δ1 are given by cup product with the loga-
rithmic Kodaira–Spencer class ρ ∈ H1(P, TP (− logXt)). The maps

fp+r : Rp,d(X) → Hp+r(Ωn+r−p+1
P (logXt))

are induced by maps

fp+r : H0(Ωn+2r+1
P (logXt) ⊗ ξp+rE ) → Hp+r(Ωn+r−p+1

P (logXt)).

Let e ∈ H1(P, TP (− logXt) ⊗ ξ−1
E ) be the extension class of the short exact

sequence

0 → TP (− logXt) → Σ → ξE → 0

from Lemma 1.2.7. The logarithmic Kodaira–Spencer map

Tt → H1(P, TP (− logXt))
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can be identified with the connecting homomorphism

H0(P, ξE) → H1(P, TP (− logXt))

associated to the exact sequence (4.2), and the map fp+r is given by cup
product with ep+r. Therefore the commutativity of the upper square follows,
because

(id⊗fb+r−1)(a2(α1 ∧ α2 ⊗ β)) = (id⊗fb+r−1)(α2 ⊗ (α1β) − α1 ⊗ (α2β))

= α2 ⊗ α1 ∪ β ∪ eb+r−1

−α1 ⊗ α2 ∪ β ∪ eb+r−1

= (α2 ⊗ α1 ∪ β − α1 ⊗ α2 ∪ β) ∪ eb+r−1

and

d2(id⊗fb+r−2)(α1 ∧ α2 ⊗ β) = d2(α1 ∧ α2 ⊗ (β ∪ eb+r−2))

= α2 ⊗ α1 ∪ e ∪ β ∪ eb+r−2

−α1 ⊗ α2 ∪ e ∪ β ∪ eb+r−2

= (α2 ⊗ α1 ∪ β − α1 ⊗ α2 ∪ β) ∪ eb+r−1.

One can check in a similar way that the lower square commutes. The commu-
tativity of the diagram with maps id⊗f p follows by passage to the quotient.

�

Remark 4.3.8. The same result holds if we replace U by T , where g : T →
U is a finite étale covering.

To investigate the image of the Abel–Jacobi map for very general complete
intersections X = V (d0, . . . , dr) ⊂ Y , we study normal functions ν that are
obtained by spreading out a cycle Z ∈ Zm

hom(X). Our purpose is to show
that, modulo torsion, such a normal function is induced by a codimension
m cycle on Y . We could proceed as in Chapter 2 and show that the Koszul
cohomology group to which δν belongs is isomorphic to Hm,m

pr (Y ), but then
it remains to show that δν comes from a primitive Hodge class on Y . To
circumvent this problem we shall use a different approach, based on results
of Nori, Green and Müller–Stach (see [No], [GM]). Let U = PH0(Y,E) \ ∆
be the complement of the discriminant locus, and let XU ⊂ YU = Y × U
be the universal family of smooth complete intersections in Y of multidegree
(d0, . . . , dr). Let g : T → U be a finite étale covering. By base change we
obtain a commutative diagram

XT −→ XU −→ Xy
y

y
T

g−→ U −→ Spec C.
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Nori’s idea is to extend the result of Green and Voisin by comparing the
cohomology in degree 2m of the families YT and XT .

Lemma 4.3.9. If

(1)
r∑
i=0

di + (m− 2)dr ≥ `+ 2

(2)
r∑
i=1

di + (m− 1)dr ≥ `+ 1

(3)
∑

i=min(1,r)

di ≥ `− 1

then H2m(YT ,Q) ∼= H2m(XT ,Q).

Proof: We show that

H2m(YT , XT ; Q) = H2m+1(YT , XT ; Q) = 0.

We give a brief outline of the main steps of the proof; details can be found
in [No] or [G4, Lecture 8]. The cohomology groups Hk(YT , XT ) carry a MHS
such that GrWp Hk(YT , XT ) = 0 for all p < k − 1. Hence it suffices to show
that

FmH2m(YT , XT ) = FmH2m+1(YT , XT ) = 0.

These statements follow if Ha(Y ×{t},Ωb
YT ,XT

|Y×{t}) = 0 for all a and b such
that b ≥ m and a + b ≤ 2m + 1. There is a spectral sequence that begins
with

Ep,q
1 (b) = Ωp

T,t ⊗Hp+q(Y,Ωb−p
Y,Xt

)

and that converges to Hp+q(Y × {t},Ωb
YT ,XT

|Y×{t}); cf. [No, Remark 3.10].
Therefore we are done if we show that Ep,q

∞ (b) = 0 for all integers p, q and
b such that b ≥ m and p + q + b ≤ 2m + 1. By the Lefschetz hyperplane
theorem we may assume that b + q ≥ 2m. Thus we are left with the terms
E0,2m−b

∞ (b), E1,2m−b
∞ (b) and E0,2m−b+1

∞ (b) for b ≥ m. As

E0,2m−b+1
1 (b) = H2m−1(Y,Ωb

Y,Xt
) ∼= kerH2m−b+1(Y,Ωb

Y ) → H2m−b+1(Xt,Ω
b
Xt

)

and the Grassmann variety Y has no cohomology in odd degree, the term
E0,2m−b+1

1 (b) vanishes. The terms E0,2m−b
2 (b) and E1,2m−b

2 (b) are the coho-
mology groups at the middle term of the complexes

0 → H2m−b(Ωb
Y,Xt

) → Ω1
T,t ⊗H2m−b+1(Ωb−1

Y,Xt
)

and

H2m−b(Ωb
Y,Xt

) → Ω1
T,t ⊗H2m−b+1(Ωb−1

Y,Xt
) → Ω2

T,t ⊗H2m−b+2(Ωb−2
Y,Xt

).
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Set E−p,−q
1 (b) = Ep,q

1 (b)∨. If condition (3) is satisfied, then Lemmas 4.3.1,
4.3.2, 4.3.7 and Remark 4.3.8 show that the dual complexes fit into commu-
tative diagrams

E−1,b−2m
1 (b) −→ E0,b−2m

1 (b) −→ 0y∼=
y∼=∧2S1,0 ⊗ Rb−1,d(X) −→ Rb,d(X) −→ 0

E−2,b−2m
1 (b) −→ E−1,b−2m

1 (b) −→ E0,b−2m
1 (b)y∼=

y∼=
y∼=∧2S1,0 ⊗ Rb−2,d(X) −→ S1,0 ⊗Rb−1,d(X) −→ Rb,d(X).

The vanishing of the terms E0,2m−b
2 (b) and E−1,2m−b

2 (b) follows from Lemma
4.3.3 if the conditions (1) and (2) are satisfied. �

Recall that Deligne–Beilinson cohomology groups are defined for smooth,
quasi–projective varieties, using a good compactification and the truncated
complex of differential forms with logarithmic poles along the boundary di-
visor; see [EV].

Corollary 4.3.10. If the conditions (1)–(3) of Lemma 4.3.9 are satisfied,
then

H2m
D (YT ,Q) ∼= H2m

D (XT ,Q).

Proof: This follows from Lemma 4.3.9 by the long exact sequence for
Deligne–Beilinson cohomology [EV] and the five lemma. �

Theorem 4.3.11. Let X = V (d0, . . . , dr) (d0 ≥ . . . ≥ dr) be a smooth
complete intersection of odd dimension 2m − 1 (m ≥ 2) in the Grassmann
variety Y = G(s, ` + 1), and let i : X → Y be the inclusion map. If X is
very general and

(1)
r∑
i=0

di + (m− 2)dr ≥ `+ 2

(2)
r∑
i=1

di + (m− 1)dr ≥ `+ 1

(3)
∑

i=min(1,r)

di ≥ `− 1
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then the image of

clD,X : CHm(X)Q → H2m
D (X,Q)

coincides with the image of

i∗◦ clD,Y : CHm(Y )Q → H2m
D (Y,Q).

Proof: If t ∈ U is a very general point, then every cycle Zt ∈ CHm
hom(Xt)

can be spread out. This means that there exist a finite étale morphism
g : T → U , a relative cycle ZT ∈ Zm

hom(XT/T ) and a point t0 ∈ g−1(t) such
that the fiber of ZT over t0 equals Zt. By Corollary 4.3.10, the Deligne cycle
class clD(ZT ) ∈ H2m

D (XT ,Q) can be lifted to an element α ∈ H2m
D (YT ,Q). Let

jt : Y → YT be the inclusion map that sends y to (y, t), and let pY : YT → Y
be the projection onto the first factor. Since j∗t α ∈ H2m

D (Y,Q) ∼= Hdgm(Y )Q

is independent of t, there exists an element β ∈ Hdgm(Y )Q such that p∗Y β =
α. As the cohomology ring of Grassmann varieties is generated by algebraic
cycles, it follows that β = clY (Z) for some cycle Z ∈ Zm(Y ); by construction
we have Z ∈ Zm(Y )0, i.e. clY (Z) ∈ H2m

pr (Y ). Let kt : Xt → XT be the
inclusion map. Combining Corollary 4.3.10 with the commutative diagram

H2m
D (YT ,Q) −→ H2m

D (XT ,Q)xp∗
Y

yk∗t

H2m
D (Y,Q)

i∗t−→ H2m
D (Xt,Q),

we find that

clD(Zt) = k∗t clD(ZT )

= i∗t clD,Y (Z).

�

Remark 4.3.12. Green and Müller–Stach are able to produce the desired
cycle Z ∈ Zm(Y ) by an induction process that involves Lefschetz pencils,
under the assumption that the generalized Hodge conjecture holds for the
intermediate Jacobian Jm(Y ); see [GM] or [G4, Lecture 8]. Here we have
presented a similar result in a much simpler case, where the Hodge conjecture
for Y is known, but with effective degree bounds. Note that condition (3)
implies the conditions (1) and (2) if m > 2.
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4.4 Examples

We present more precise versions of Theorem 4.3.11 in two special cases: the
case where Y = G(2, ` + 1) is the Grassmann variety of lines in P`, and the
case where Y = G(3, 6) is the Grassmann variety of planes in P5. First we
consider a complete intersection X = V (d0, . . . , dr) of odd dimension in the
Grassmann variety Y = G(2, `+ 1) of lines in P`. For a nonnegative integer
ν and a multi–index I = (i1, . . . , iν) we write

r1(ν, I) =
r∑

i=0

(di − 1) +
ν∑

k=1

(dik − 1)

r2(ν, I) =
r∑

i=1

(di − 1) +
ν∑

k=1

(dik − 1).

Lemma 4.4.1. If n = dim X = 2m − 1 and p = m − c (c ∈ Z) then
Hn+1−p(Y,Ωp

Y,X) ∼= R∨
p,d(X), except possibly in one of the following cases:

(i) ` is odd and r + 2r1(ν, I) = 2c for some integer ν, 0 ≤ ν ≤ p− 1, and
some multi–index I = (i1, . . . , iν).

(ii) r + 2r1(ν, I) = 2c + 2 for some integer ν, 0 ≤ ν ≤ p − 2, and some
multi–index I = (i1, . . . , iν).

(iii) ` is odd and r + 2r2(ν, I) = 2c+ 2 for some integer ν, max(0, 1 − r) ≤
ν ≤ p− 1, and some multi–index I = (i1, . . . , iν).

Proof: Using Lemma 4.2.6, we verify the conditions (1)–(4) of Lemma 1.3.7.
Let us verify that condition (1) is satisfied, unless we are in case (i). We have
to show that

Hp−ν(Y,Ωn+r+1−p+ν
Y ⊗ detE ⊗ SνE) = 0 for all 0 ≤ ν ≤ p− 1.

Lemma 4.2.6 shows that this statement fails if and only if there exists an
integer ν in the indicated range and a multi–index I = (i1, . . . , iν) such that

3(p− ν) − 1 < 2`− 2 − (p− ν) < (p− ν) + ` (4.2)

and
r + ν + 1 + r1(ν, I) = 2`− 2 − 3(p− ν) + 1. (4.3)

Rewriting (4.2), we obtain 2` − 4 < 4(p − ν) < 2` − 1. This inequality can
only hold if ` is odd and 4(p− ν) = 2`− 2. Suppose that (4.2) holds. Then
2ν = 2p− `+ 1 = 2m− 2c− `+ 1. The equality (4.3) holds if and only if

r + r1(ν, I) = `− 1 − 3p+ 2m− 2c.
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Multiplying this equation by two and using dim Y = 2` − 2 = 2m + r, we
obtain

r + 2r1(ν, I) = 2c.

In a similar way we show that condition (2) is satisfied unless we are in case
(ii) with ` odd, that condition (3) is satisfied unless we are in case (ii) with
` even and that condition (4) is satisfied unless we are in case (iii). �

Proposition 4.4.2. Let X = V (d0, . . . , dr) be a very general complete in-
tersection of odd dimension 2m−1 (m ≥ 2, d0 ≥ . . . ≥ dr) in the Grassmann
variety Y = G(2, `+1) of lines in P`. Then the conclusion of Theorem 4.3.11
holds, except possibly in one of the following cases:

1. r = 0

X = V (1) ⊂ G(2, `+ 1), ` ≥ 3

X = V (2) ⊂ G(2, `+ 1), 3 ≤ ` ≤ 7, ` = 11

X = V (3) ⊂ G(2, `+ 1), ` = 3, ` = 5, ` = 7

X = V (4) ⊂ G(2, `+ 1), ` = 3, ` = 7

2. r = 2

X = V (d, 1, 1) ⊂ G(2, `+ 1), ` ≥ 4, d ≥ 1

X = V (d, 2, 1) ⊂ G(2, `+ 1), ` ≥ 4, d ≥ 2

X = V (d, 2, 2) ⊂ G(2, 6)

3. r = 4

X = V (d, 1, 1, 1, 1) ⊂ G(2, `+ 1), ` ≥ 5

4. r = 6

X = V (1, 1, 1, 1, 1, 1, 1) ⊂ G(2, `+ 1), ` ≥ 6.

Proof: Argue as in the proof of Theorem 4.3.11, using Lemma 4.4.1 and
Lemma 4.3.3. �

Remark 4.4.3. I do not know whether the degree bounds in Proposition
4.4.2 are sharp. The following cases are genuine counterexamples:

(i) X = V (1) ⊂ G(2, `+ 1), ` ≥ 3, m even
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(ii) X = V (1, 1, 1) ⊂ G(2, `+ 1), ` even, m even.

(iii) X = V (d) ⊂ G(2, 4), 2 ≤ d ≤ 4

(iv) X = V (2, 1, 1) ⊂ G(2, 5)

(v) X = V (1, 1, 1, 1, 1) ⊂ G(2, 6)

(vi) X = V (1, 1, 1, 1, 1, 1, 1) ⊂ G(2, 7)

(vii) X = V (d, 1, 1) ⊂ G(2, `+ 1), ` odd

(viii) X = V (2) ⊂ G(2, 5)

For the cases (i) and (ii) this simply follows because H2m−1(X) = 0, whereas
Hdgm(Y )pr ⊗ Q 6= 0. Note that the conclusion of Proposition 4.4.2 trivially
holds if m is odd, since in this case both H2m−1(X) and Hdgm(Y )pr ⊗Q are
zero. In case (iii) the Grassmann variety Y is a smooth quadric in P5; its
hypersurface sections of degree two and three are Fano threefolds, and it is
known that in these cases the intermediate Jacobian is covered by families of
1–cycles (see [Ty1]). The hypersurface X = V (4) ⊂ G(2, 4) is a Calabi–Yau
threefold; Paranjape has shown that its Abel–Jacobi image is not finitely
generated [Par]. The varieties appearing in (iv) and (v) are Fano threefolds,
and their intermediate Jacobians are again covered by families of 1–cycles (see
[Pu]). In case (vi) we have a Calabi–Yau threefold; since Hdg3

pr(G(2, 7)) = 0,
we obtain a counterexample using a result of Voisin [V6]. Case (vii) is treated
using a result of Donagi [Don]; he proved that if X ′ = V (1, 1) ⊂ G(2, `+ 1),
` odd, then dim Q Hdgmvar(X

′) ⊗ Q 6= 0, hence the hypersurface sections of
X ′ are counterexamples by results of N. Katz and Zucker (cf. Remark 2.4.2
(ii)). Finally, the variety appearing in case (viii) is a Fano fivefold of index
three such that H5(X) carries a Hodge structure of level one. In Chapter 5
we shall show that the generalized Hodge conjecture holds in this case.

Some possible counterexamples are

1. X = V (1, 1, 1, 1, 1) ⊂ G(2, 8)

2. X = V (1, 1, 1, 1, 1) ⊂ G(2, `+ 1), ` even

3. X = V (d, 1, 1, 1, 1) ⊂ G(2, `+ 1), ` odd.

In the first two cases the generalized Hodge conjecture predicts that we have
Jacobi inversion, as H2m−1(X) carries a Hodge structure of level one. The
varieties X ′ = V (1, 1, 1, 1) ⊂ G(2, ` + 1) may have nontrivial Hodge classes,
as H2m(X) carries a Hodge structure of level zero.
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As a second example, we investigate a Grassmann variety of odd dimen-
sion.

Proposition 4.4.4. Let Y = G(3, 6) be the Grassmann variety of planes in
P5. If p ≥ 1 and k > 0 then

Hp(Y,Ωq
Y (k)) 6= 0

if and only if (p, q, k) is one of the following triples:

(1, 3, 2), (1, 4, 3), (1, 5, 3), (1, 5, 4), (1, 6, 4), (3, 6, 2).

Proof: Apply Proposition 4.2.3. �

Proposition 4.4.5. The conclusion of Theorem 4.3.11 holds for very general
complete intersections in Y = G(3, 6), except possibly in one of the following
cases:

1. X = V (d, 1), d ≥ 1

2. X = V (d, 2), d ≥ 2

3. X = V (d, 1, 1, 1), d ≥ 1

4. X = V (1, 1, 1, 1, 1, 1).

Proof: Similar to the proof of Theorem 4.3.11, where we use Lemma 4.4.4
instead of of Lemma 4.3.1. �

Remark 4.4.6. Using the result in Remark 2.4.2 (ii), we conclude that the
first case provides a counterexample to the conclusion of Theorem 4.3.11,
since a general hyperplane section X ′ = V (1) ⊂ G(3, 6) has nontrivial Hodge
classes [Don]. The third case is a possible counterexample, as H6(X ′) carries
a Hodge structure of level zero if X ′ = V (1, 1, 1) ⊂ G(3, 6). In the fourth
case, X is a Calabi–Yau threefold; we obtain a counterexample by [V6] (note
that H4

pr(G(3, 6)) = 0). The second exceptional case arises from the degree
conditions needed for the Jacobi ring description of H7

var(X), and I do not
know whether it gives rise to counterexamples.
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Chapter 5

The five–dimensional quadratic
line complex

5.1 Introduction

The image of the Abel–Jacobi map for very general complete intersections
in projective space has been studied extensively. For complete intersections
in Grassmann varieties G(s, ` + 1) (s ≥ 2), much less is known. It has been
proved that the Abel–Jacobi map ψX : CH2

hom(X) → J2(X) is surjective
for the Fano threefolds X = V (2, 1, 1) ⊂ G(2, 5) and X = V (1, 1, 1, 1, 1) ⊂
G(2, 6) [Pu]. Donagi [Don] has proved the surjectivity of the Abel–Jacobi
maps ψX : CH`−2

hom(X) → J `−2(X), X = V (1, 1, 1) ⊂ G(2, ` + 1) (` odd,
` ≥ 5) and ψX : CH4

hom(X) → J4(X), X = V (1, 1) ⊂ G(3, 6). Motivated by
Theorem 4.3.11, we shall verify that ψX : CH3

hom(X) → J3(X) is surjective
for the general quadratic line complex X = V (2) ⊂ G(2, 5).

The quadratic line complex in G(2, 4) has been studied by numerous
authors; see for instance [GH1, Chapter 6]. The quadratic line complex in
G(2, 5) was studied by B. Segre [Se]; according to L. Roth, it is a rational
variety [Ro]. A smooth quadratic line complex X = V (2) ⊂ G(2, 5) is a Fano
fivefold of index 3. The cohomology group H5(X) carries a Hodge structure
of level one with h2,3(X) = 10. In Section 5.2 we show that a general five–
dimensional quadratic line complex contains a family of planes, parametrized
by a smooth and irreducible curve C. Using the infinitesimal Abel–Jacobi
mapping associated to this family, we verify in Section 5.3 that the map
J(C) → J3(X) is nontrivial; the surjectivity of this map then follows by a
monodromy argument.
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5.2 The family of planes

Let V be a complex vector space of dimension 5, and let G = G(2, V ) be
the Grassmann variety of lines in P4 = P(V ). The variety G is embedded
as a smooth six–dimensional subvariety of degree 5 in P9 = P(∧2V ) by the
Plücker embedding. We denote the line in P4 corresponding to a point x ∈ G
by `x. A quadratic line complex in G is the intersection of G with a quadric
Q ⊂ P9; it corresponds to a five–dimensional family of lines in P4.

Let p ∈ P(V ) be a point, and let σ(p) = {x ∈ G : p ∈ `x} be the
corresponding Schubert cycle. Since the tangent space TxG is spanned by

TxG ∩G = {z ∈ G : `z ∩ `x 6= ∅} = ∪p∈`xσ(p),

the line spanned by two points x, y ∈ G is contained in G if and only if
`x ∩ `y 6= ∅. Hence G contains two families of 2–planes: the σ–planes (solid
point–stars) and the ρ–planes (ruled planes) (cf. [SR, X, §4]). Let h ⊂ P4

be a hyperplane, let p ∈ h be a point and let w2 ⊂ P4 be a 2–plane. The σ–
planes are the Schubert cycles σ(p, h) = {x ∈ G : p ∈ `x ⊂ h}; the ρ–planes
are the Schubert cycles σ(w2) = {x ∈ G : `x ⊂ w2}.

Let D(a1, . . . , ak, n) be the flag variety of type (a1, . . . , ak, n), i.e., the
variety that parametrizes flags of linear subspaces

Va1 ⊂ Va2 ⊂ . . . ⊂ Vak
⊂W,

where W is a complex vector space of dimension n and dim Vi = i. Instead
of D(a1, . . . , ak, n) we sometimes write D(a1, . . . , ak,W ).

The flag variety D = D(a1, . . . , ak, n) carries a sequence of universal sub-
bundles

Ha1 ⊂ Ha2 ⊂ . . . Hak
⊂ Hn = W ⊗C OD.

Let Hi,j = Hi/Hj (i > j) be the induced quotient bundles. The exact se-
quence 0 → Hj → Hi → Hi,j → 0 is obtained by pulling back the tautological
exact sequence on the Grassmann variety G(aj, ai) via the projection map

pi,j : D(a1, . . . , ak, n) → G(ai, aj).

The family of σ–planes on G is parametrized by the 7–dimensional flag
variety D = D(1, 4, 5); the family of ρ–planes on G is parametrized by the
6–dimensional flag variety D(3, 5). In the sequel we shall concentrate on the
family of σ–planes on G. The Plücker embedding i : G(2, 5) → P9 sends a
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two–dimensional linear subspace V2 = 〈v1, v2〉 to the line in
∧2 V spanned

by v1 ∧ v2. A coordinate–free description of the Plücker embedding is

i : G(2, V ) −→ P(
∧2V )

(V2, V ) 7→ (
∧2V2,

∧2V ).

Note that i is an embedding because the pair (W,
∧2 V ) ∈ i(G) uniquely

determines V2 by

V2 = {v ∈ V : v ∧ w = 0 for all w ∈W}.

Given a point (V1, V4, V ) ∈ D(1, 4, 5), we denote by V1

∧
V4 the subspace

of
∧2 V spanned by the vectors v ∧ w, where v ∈ V1 and w ∈ V4. The

Plücker embedding induces an embedding of the flag variety D(1, 4, 5) into
the Grassmann variety G′ = G(3, 10) of 2–planes in P9: choose a vector v
that spans V1 and a basis {v, v1, v2, v3} for V4, and map the point (V1, V4, V )
to the 3–dimensional linear subspace of

∧2 V spanned by {v∧v1, v∧v2, v∧v3}.
A coordinate–free description of this map is

j : D = D(1, 4, 5) → G(3, 10)

(V1, V4, V ) 7→ (V1

∧
V4,

∧2V ).

Note that we can recover the pair (V1, V4) from (W,
∧2 V ) ∈ im j by setting

V1 = {v ∈ V : v ∧ w = 0 for all w ∈W}
V4 = {v ∈ V : v ∧ w = 0 for some w ∈W}.

Let X = G∩Q be a quadratic line complex. The quadric Q corresponds
to a symmetric form Q ∈ S2(

∧2 V ∨). Let

0 → S3 →
∧2V ⊗OG′ → Q7 → 0

be the tautological exact sequence on G′ = G(3, 10). This sequence induces
a surjective map of vector bundles

S2(
∧2V ∨) ⊗OG′ → S2S∨

3

whose kernel we denote by K. Let s : S2(
∧2 V ∨) → H0(G′, S2S∨

3 ) be the
induced map on global sections. The Fano variety FX of σ–planes contained
in X is the zero scheme of the section s(Q). Let

0 → j∗K → S2(
∧2V ∨) ⊗OD → j∗S2S∨

3 → 0

be the exact sequence obtained by pullback to D. By composition of the
inclusion map P(j∗K) ⊂ P(S2

∧2 V ∨)×D and projection onto the first factor,
we obtain a map

P(j∗K) → P(S2
∧2V ∨)
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that exhibits the projective bundle P(j∗K) as the universal family of Fano
schemes of σ–planes over the family of quadratic line complexes (cf. [AK]).

To calculate the numerical invariants of the Fano scheme FX , we deter-
mine the Chern classes of j∗S∨

3 .

Lemma 5.2.1. j∗S3 = H1 ⊗H4,1.

Proof: The fiber of j∗S3 over a point x = (V1, V4, V ) is V1

∧
V4. Since the

natural map V1

∧
V4 → V1 ⊗ (V4/V1) is a canonical isomorphism, we obtain

the desired isomorphism of vector bundles. �

Remark 5.2.2. Let G(d, n) be a Grassmann variety that is embedded in
projective space by the Plücker embedding. Let X = V (d1, . . . , dr) ∩ G be
a complete intersection in G. The previous result, whose original proof was
simplified by a suggestion of L. Manivel, gives a method to compute the
numerical invariants of the Fano schemes Fk(X) of k–planes contained in X.
It simplifies the method of computation used in [Mar].

The flag variety D = D(1, 4, 5) is the incidence correspondence in P4 ×
(P4)∨ with projections p : D → G(4, 5) = (P4)∨ and q : D → P4. Note that
j∗S3 = H1 ⊗ H4,1 = q∗(QP4(−1)). To describe the Chow ring CH∗(D), we
note that the projection p gives D the structure of a projective bundle P(S4)
over G(4, 5). Set x = c1(OD(1)) and h = c1(S∨

4 ). The Chow ring of D is

CH∗(D) ∼= Z[x, h]/(x4 − hx3 + h2x2 − h3x+ h4, h5).

The first Chern classes of the universal bundles H1 = q∗OP4(−1) and H4 =
p∗S4 are c1(H1) = −x, c1(H4) = −h. Using the exact sequence

0 → H∨
4,1 → H∨

4 → H∨
1 → 0

we compute the Chern polynomial of H∨
4,1:

c(H∨
4,1) = (1 + ht+ h2t2 + h3t3 + h4t4)(1 + xt)−1

= 1 + (h− x)t+ (h2 − hx+ x2)t2 + (h3 − h2x+ hx2 − x3)t3.

Using Lemma 5.2.1, we find that the Chern classes of j∗S∨
3 are

c1(j
∗S∨

3 ) = 3c1(H
∨
1 ) + c1(H

∨
4,1) = h+ 2x

c2(j
∗S∨

3 ) = 3c1(H
∨
1 )2 + 2c1(H

∨
1 )c1(H

∨
4,1) + c2(H

∨
4,1)

= 2x2 + hx+ h2

c3(j
∗S∨

3 ) = c1(H
∨
1 )3 + c1(H

∨
1 )2c1(H

∨
4,1) + c1(H

∨
1 )c2(H

∨
4,1) + c3(H

∨
4,1)

= hx2 + h3.
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The top Chern class of E = S2(j∗S∨
3 ) is

c6(E) = 8c1(j
∗S∨

3 )c2(j
∗S∨

3 )c3(j
∗S∨

3 ) − 8c3(j
∗S∨

3 )2

= 32hx5 + 24h2x4 + 56h3x3 + 24h4x2 + 24h5x

= 80h3x3.

Let π : X → PH0(P9,OP9(2)) be the universal family of quadratic line
complexes. Set Xt = π−1(t).

Lemma 5.2.3. If X ⊂ G is a general quadratic line complex, then FX is a
smooth curve of genus 161.

Proof: Consider the universal family of Fano schemes

p : P(j∗K) → P(S2
∧2V ∨).

Note that p−1(t) = FXt
= D ∩ F2(Qt), where F2(Qt) is the Fano variety of

2–planes contained in the quadric Qt. For a general Q ∈ P(
∧2 S2V ∨) we shall

compute the intersection [D].[F2(Q)] ∈ CH20(G′), G′ ∼= G(3, 10). Because
[F2(Q)] = c6(S

2S∨
3 ), we have

[D].[F2(Q)] = j∗(j
∗[F2(Q)])

= j∗c6(E)

= j∗(80h3x3).

The projection formula shows that

j∗(80h3x3).c1(S∨
3 ) = j∗(80h3x3.j∗c1(S∨

3 ))

= j∗(80h3x3.(2x+ h))

= 240,

where we have used that h3x4 = h4x3. Hence [D].[F2(Q)] = j∗(80h3x3) 6= 0
and D ∩ F2(Q) 6= ∅ for general Q by Kleiman’s transversality theorem [H2,
III, Thm. 10.8]. It follows that the map p is dominant, and hence surjective.
As P(j∗K) is a smooth and irreducible variety of dimension 55, the general
fiber FX is a smooth curve by generic smoothness [H2, III, Cor. 10.7]. The
genus of FX , for general X, is computed using the exact sequences

0 → TFX
→ TD|FX

→ E|FX
→ 0 (5.1)

0 → Tv → TD → p∗TG(4,5) → 0 (5.2)

0 → OD → p∗S4 ⊗OD(1) → Tv → 0. (5.3)

From the sequences (5.2) and (5.3) we obtain

c1(TD) = c1(Tv) + c1(p
∗TG(4,5)) = 4x− h+ 5h = 4x+ 4h.
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Let jX : FX → D be the inclusion map. The exact sequence (5.1) shows that

(jX)∗c1(FX) = (c1(TD) − c1(S
2S∨

3 )).[FX ]

= (4x+ 4h− 4(2x+ h)).80h3x3

= −320h3x4 = −320h4x3,

hence 2 − 2g(FX) = −320. �

To show that the curve FX is connected, we study the homogeneous vector
bundle E∨ and its exterior powers on the flag variety D. We refer to Section
4.2 for notation and terminology. Choose a basis {e1, . . . , e5} for V , and let
W ⊂ V be the subspace spanned by e2, e3 and e4. Let U ⊂ V be the one–
dimensional subspace spanned by e5. The flag variety D is a homogeneous
space of the form D = SL(5,C)/P , where

P =







h1 0 0
h2 h3 0
h4 h5 h6


 : h1, h6 ∈ C∗, h3 ∈ GL(3,C), h1. det(h3).h6 = 1



 .

Let ρ : P → W be the representation of P defined by ρ(h) = h3, and let
χ : P → U be the character χ(h) = h6. The homogeneous vector bundle
j∗S3 corresponds to the irreducible representation ρ⊗χ : P →W ⊗U . Since

S2(W ⊗ U) = S2W ⊗ U⊗2

∧mS2(W ⊗ U) =
∧m(S2W ) ⊗ U⊗2m,

it suffices to determine the highest weights of the representations
∧m(S2W )

for 1 ≤ m ≤ 6.

The representation ρ is induced by the standard representation of the
semisimple part Pss

∼= SL(3,C). The irreducible representation of SL(3,C)
with highest weight (β2, β3, β4) = β2e2 + β3e3 + β4e4 is denoted by Γβ2,β3,β4 .

Lemma 5.2.4. The decompositions of the exterior powers
∧k(S2W ) into

irreducible representations of SL(3,C) are

S2W ∼= Γ2,0,0

∧4(S2W ) ∼= Γ4,3,1∧2(S2W ) ∼= Γ3,1,0

∧5(S2W ) ∼= Γ4,4,2∧3(S2W ) ∼= Γ4,1,1 ⊕ Γ3,3,0

∧6(S2W ) ∼= Γ4,4,4.

Proof: This follows either from direct computation of the weights or by
applying Formula (2.6) in [JPW]. �
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Note that a weight λ = (β1, . . . , β5) of SL(5,C) is singular if and only
if there exist indices 1 ≤ i < j ≤ 5 such that βi = βj. The index of
λ = (β1, . . . , β5) is

index(λ) = #{α ∈ R+ : (λ, α) < 0}
= #{(i, j) : 1 ≤ i < j ≤ 5, βi < βj}.

Let δ = λ1 +λ2+λ3 +λ4 = 4e1 +3e2 +2e3+e4 be the sum of the fundamental
dominant weights.

Using Lemma 5.2.4, we make a table of the highest weights λi associated
to the vector bundles

∧k E∨ and the indices of λi+δ (if the weight is singular,
we put a bar). Note that the highest weight of an irreducible representation
of P is dominant for the semisimple part Pss

∼= SL(3,C) of P . To emphasize
this we write β1e1 + . . .+ β5e5 = (β1; β2, β3, β4; β5).

λi index(λi + δ)
E∨ (0;2,0,0;2) -∧2E∨ (0;3,1,0;4) -∧3E∨ (0;4,1,1;6) 4

(0;3,3,0;6) -∧4E∨ (0;4,3,1;8) 6∧5E∨ (0;4,4,2;10) 6∧6E∨ (0;4,4,4;12) 7

Lemma 5.2.5. If X ⊂ G is a general quadratic line complex, the curve FX
is connected.

Proof: In Lemma 5.2.3 we showed that FX is a smooth curve. Since FX
is the zero locus of the global section s(Q) ∈ H0(D,E), we have a Koszul
resolution

0 → ∧6E∨ → · · · → ∧2E∨ → E∨ → OD → OFX
→ 0

for OFX
. Hence H0(FX ,OFX

) ∼= H0(D,OD) = C if Hp(D,
∧pE∨) = 0 for

1 ≤ p ≤ 6. This follows from Theorem 4.2.2, as the weights λi associated to∧pE∨ are either singular or have index(λi + δ) 6= p. �

Remark 5.2.6. The quadratic complex of lines in P4 has been studied from
a different point of view by B. Segre [Se]. He considers the Fano variety F3(G)
of 3–planes on G(2, 5). Since every 3–plane contained in G is a Schubert
cycle σ(p) of lines through a point p ∈ P4, F3(G) is isomorphic to P4. A
point p ∈ P4 is called singular (with respect to X) if the corresponding 3–
plane σ(p) is tangent to the quadric Q ⊂ P9 that defines X. For a general
quadratic line complex X, Segre claims the following results:
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1. The singular points are parametrized by a sextic hypersurface Σ ⊂ P4.

2. The points p ∈ P4 such that rank (Q|σ(p)) ≤ 2 (i.e., the restriction of Q
to σ(p) is a union of two planes) are parametrized by a smooth curve
C ⊂ Σ of degree 40 and genus 81.

To rephrase these results in modern language, we consider the map

g : P4 → G(4,
∧2V )

(V1, V5) 7→ (V1

∧
V5,

∧2V )

that embeds F3(G) ∼= P4 as a subvariety of the Grassmann variety G′ =
G(4, 10) of 3–planes in P9. Set F = g∗S4, and let QP4 be the universal
quotient bundle on P4. As before, one shows that F = H1⊗H5,1 = QP4(−1).
Pull back the natural map S2(

∧2 V ∨) ⊗ OG′ → S2(S∨
4 ) to obtain a map

s̃ : S2(
∧2 V ∨) ⊗ OP4 → S2F∨. The image s̃(Q) ∈ S2F∨ corresponds to a

symmetric bundle map f : F → F ∨. Let

Dk(f) = {p ∈ P4 : corank f(p) ≥ k}

be the kth degeneracy locus of f . If (p, h) ∈ FX , then Q ∩ σ(p) contains
the 2–plane σ(p, h). Hence p is a singular point, and we have a well–defined
map τ : FX → C = D2(f) that sends (p, h) to p; the map τ is a double
covering, ramified over D3(f). It follows that if Q is general, the degeneracy
loci Σ = D1(f) and C = D2(f) have the expected codimension; using the
formulas in [HT], we find that deg Σ = 6 and degC = 40. I did not verify
that D3(f) = ∅; if this locus is empty, then σ is an unramified covering and
the Riemann–Hurwitz formula shows that the genus of C is 81, as claimed
by B. Segre.

5.3 Infinitesimal Abel–Jacobi map

We study the infinitesimal Abel–Jacobi mapping associated to the family
of σ–planes on a general quadratic line complex X ⊂ G(2, 5). Once we
have shown that this map is nontrivial, it follows that the Jacobian J(FX)
of the parameter curve surjects onto the intermediate Jacobian J 3(X) by a
monodromy argument.

To find the normal bundle NL0,G of a σ–plane L0 inside the Grassmann
variety G = G(2, 5), we consider the restriction of the universal bundles over
Grassmannians to certain Schubert cycles. Let G(r+1, V ) be the Grassmann
variety of r–planes in P(V ), where V is a complex vector space of dimension
n+1. We write Lx for the r–plane corresponding to a point x ∈ G(r+1, V ).
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Let h ⊂ P(V ) be a hyperplane and p ∈ h a point. Consider the following
types of Schubert cycles:

Z1 = σ(h) = {x ∈ G : Lx ⊂ h} ∼= G(r + 1, n)

Z2 = σ(p) = {x ∈ G : p ∈ Lx} ∼= G(r, n)

Z3 = σ(p, h) = {x ∈ G : p ∈ Lx ⊂ h} ∼= G(r, n− 1).

Let

0 → S → V ⊗OG → Q → 0

be the tautological exact sequence on G(r+1, n+1), and let Si (resp. Qi) be
the universal subbundle (resp. quotient bundle) on the Grassmann variety
Zi (i = 1, 2, 3).

Lemma 5.3.1.

(i) S|Z1 = S1, Q|Z1
∼= Q1 ⊕OZ1.

(ii) S|Z2
∼= S2 ⊕OZ2, Q|Z2 = Q2.

(iii) S|Z3
∼= S3 ⊕OZ3, Q|Z3

∼= Q3 ⊕OZ3.

Proof: (i): Clearly S|Z1 = S1. To prove the second assertion, we write
h = P(W ) and consider the exact commutative diagram

0 0
↓ ↓

0 → S1 → W ⊗OZ1 → Q1 → 0
‖ ↓ ↓

0 → S|Z1 → V ⊗OZ1 → Q|Z1 → 0
↓ ↓

OZ1 = OZ1

↓ ↓
0 0

that is induced by the inclusion W ⊂ V . The short exact sequence

0 → Q1 → Q|Z1 → OZ1 → 0

splits, since H1(Z1,Q1) = 0 by the Bott vanishing theorem. The assertion
(ii) follows from (i) by duality. Since Z3 is a Schubert cycle of type Z2 inside
the Grassmann variety Z1, (iii) follows by combining (i) and (ii). �
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Remark 5.3.2. This Lemma is taken from [Pap]. The converse statement
is also true: if the restrictions of S and Q to a subvariety Z ⊂ G(r+1, n+1)
split as indicated, then Z is a Schubert cycle of type Z1, Z2 or Z3 [loc. cit.].

Lemma 5.3.3. The normal bundles of the Schubert cycles Z1, Z2 and Z3

are

(i) NZ1,G = S∨
1 , NZ2,G = Q2.

(ii) NZ3,Z1 = Q3, NZ3,Z2 = S∨
3 .

(iii) NZ3,G
∼= Q3 ⊕ S∨

3 ⊕OZ3.

Proof: (i): The first assertion is clear, since Z1 is the zero locus of a section
s ∈ H0(G,S∨). The second assertion follows by duality. Clearly (ii) follows
from (i). To prove (iii), we use Lemma 5.3.1 to determine the quotient of
(S∨ ⊗Q)|Z3 by S∨

3 ⊗Q3. �

We return to the Grassmann variety G = G(2, 5). Let L0 be a Schubert
cycle of type Z3, i.e., a σ–plane. Let QL0 be the universal quotient bundle
on L0

∼= P2. Lemma 5.3.3 shows that

NL0,G = QL0

⊕OL0(1)
⊕OL0. (5.4)

Remark 5.3.4. Let ST1 be the universal subbundle on a ρ–plane T1
∼= (P2)∨.

One can show in a similar way that the normal bundle of T1 in G is NT1,G =
⊕2S∨

T1
.

Let X ⊂ G be a general quadratic line complex. In Lemmas 5.2.3 and
5.2.5 we saw that the family of σ–planes on X is parametrized by a smooth,
irreducible curve FX of genus 161. Let

ΦFX
: FX → J3(X)

be the Abel–Jacobi mapping associated to this family of planes (note that
it is only well–defined up to translation). By the universal property of the
Jacobian J(FX) this map factorizes over a map

Φ : J(FX) → J3(X).

Let
I

q−→ Xyp

FX
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be the incidence correspondence. The induced map

q∗◦p
∗ : H1(FX ,Z) → H5(X,Z)

is called the cylinder homomorphism associated to the family FX . It sends
a 1–chain γ ⊂ FX to the 5–chain ∪x∈γLx swept out on X by the planes Lx,
x ∈ γ. Under Poincaré duality the cylinder homomorphism corresponds to a
homomorphism

ψZ : H1(FX ,Z) → H5(X,Z).

Its complexification ψC is a morphism of Hodge structures of type (2, 2) that
induces a map

ψ : H0(Ω1
FX

)∨ = H0,1(FX) → H2,3(X) = H2(Ω3
X)∨.

Choose a point 0 ∈ FX and let L0 ⊂ X be the corresponding σ–plane.
The following result is due to Griffiths and Welters. Note that the adjunction
formula shows that det(NL0,X) ∼= OL0 .

Lemma 5.3.5.

(i) The transpose of the infinitesimal Abel–Jacobi mapping is the compo-
sition of the maps

H2(X,Ω3
X) −→ H2(L0,Ω

3
X |L0)

H2(L0,Ω
3
X |L0) −→ H2(L0, KL0 ⊗

∧2NL0,X)

H2(L0, KL0 ⊗
∧2NL0,X)

∼−→ H0(L0, NL0,X)∨

H0(L0, NL0,X)∨
∼−→ T∨

FX ,0

(ii) The composed map

τ : H2(X,Ω3
X) → H2(L0, KL0 ⊗

∧2NL0,X)

fits into a commutative diagram

H1(X,TX(−1))
β−→ H1(L0, NL0,X(−1))

↓ ↓
H2(X,Ω3

X)
τ−→ H2(L0,

∧2NL0,X(−3))y
yα

H2(X,
∧2TG ⊗OX(−3)) −→ H2(L0,

∧2NL0,G(−3))
↓ ↓
· · · −→ H2(L0, NL0,X(−1))
↓ ↓
· · · −→ 0

with exact columns.

Proof: For (i), see [Gr1, Thm. 2.25]. The proof of the second assertion is
analogous to the proof of Lemma 3.3.1. �
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Lemma 5.3.6.

(i) kerα 6= 0.

(ii) β is surjective.

Proof: (i): The Hilbert scheme HilbPX that parametrizes 2–planes in X is
the union of FX and a finite number of points (corresponding to the ρ–
planes contained in X). Hence the tangent space at 0 to FX is isomorphic
to H0(L0, NL0,X). As

h2(L0,
∧2NL0,X(−3)) = h0(L0, NL0,X) = 1

by Serre duality, Lemma 5.3.5 shows that

kerα 6= 0 ⇐⇒ H2(L0,
∧2NL0,G(−3)) = H2(L0, NL0,X(−1)).

We shall show that both cohomology groups vanish. Lemma 5.3.3 shows that

∧2N∨
L0,G

∼=
∧2(Q∨

L0
⊕OL0(−1) ⊕OL0)

∼=
⊕2OL0(−1) ⊕ Ω1

L0
⊕Q∨

L0
,

hence
H2(L0,

∧2NL0,G(−3)) ∼= H0(L0,
∧2N∨

L0,G
)∨ = 0.

To show that H2(L0, NL0,X(−1) = 0, we invoke the exact sequence

0 → OL0(−2) → N∨
L0,G

→ N∨
L0,X

→ 0 (5.5)

and Lemma 5.3.3 to obtain

H2(L0, NL0,X(−1)) = H0(L0, N
∨
L0,X

(−2))∨

= H0(L0, N
∨
L0,G

(−2))∨

= H0(L0,Q∨
L0

(−2) ⊕OL0(−3) ⊕OL0(−2))∨

= 0.

For part (ii) we consider the commutative diagram

0 0
↓ ↓
TL0 = TL0

↓ ↓
0 → TX ⊗OL0 → TG ⊗OL0 → NX,G ⊗OL0 → 0

↓ ↓ ‖
0 → NL0,X → NL0,G → NX,G ⊗OL0 → 0

↓ ↓
0 0.
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It induces a commutative diagram

H0(X,OX(1))
γ1−→ H0(L0,OL0(1))

↓ ↓ γ2

H1(X,TX(−1))
β−→ H1(L0, NL0,X(−1)).

The map γ1 is surjective, since X and L0 are projectively normal in P9. As
Lemma 5.3.3 shows that

H1(L0, NL0,G(−1)) = H1(L0,QL0(−1)
⊕OL0

⊕OL0(−1)) = 0,

the map γ2 is also surjective; hence β is surjective. �

Corollary 5.3.7. The map Φ is nontrivial.

Proof: This follows from Lemmas 5.3.5 (ii) and 5.3.6 by a diagram chase:
start with a nonzero element x ∈ kerα and lift it to an element

y ∈ H1(L0, NL0,X(−1)).

As β is surjective, we can lift y to an element z ∈ H1(X,TX(−1)). Its
image w ∈ H2(X,Ω3

X) satisfies τ(w) = x 6= 0. Thus the transpose of Φ∗ is
nontrivial, and the assertion follows. �

Let {Xt}t∈P1 be a Lefschetz pencil in PH0(P9,OP9(2)) with X0 = X. Let

I q−→ Xyp

F

be the relative incindence correspondence. Let U ′ ⊂ P1 (resp. U ′′ ⊂ P1) be
the subset over which X (resp. F) is smooth. Set U = U ′ ∩ U ′′.

Lemma 5.3.8. The cylinder homomorphism

ψZ : H1(FX ,Z) → H5(X,Z)

is equivariant with respect to the action of π1(U, 0).

Proof: Let γ ⊂ U be a closed loop based at 0. Since I is smooth over U , we
can cover γ by a finite number of contractible open subsets Uα(1), . . . , Uα(k)
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such that a vector field vi on Uα(i) lifts to a C∞ vector field θi on I|Uα(i)
. Let

{ϕi,t} be the family of diffeomorphisms associated to θi. The map

Fi : Uα(i) × It(i) → I|Uα(i)

(t, x) 7→ ϕi,t(x)

is a C∞ trivialisation of I over Uα(i). We have compatible trivialisations

Gi : Uα(i) ×Xt(i) → X|Uα(i)

Hi : Uα(i) × Ft(i) → F|Uα(i)

of X and F over Uα(i) associated to p∗θi and q∗θi. As the maps pt and qt
are compatible with these trivialisations, it follows that they are compatible
with the geometric monodromy. Hence p∗0, (q0)∗ and ψZ are equivariant with
respect to the action of π1(U, 0). �

Theorem 5.3.9. If X ⊂ G is a general quadratic line complex, the map
Φ : J(FX) → J3(X) is surjective.

Proof: Lemma 5.3.7 shows that the Abel–Jacobi map Φ is nontrivial. Since
π1(U

′, 0) acts transitively on H5(X,Q) ( see [V4, Lecture 4] or [DK, Exposé
XVIII, 6.6.2]), the surjectivity of ψ and Φ follows from Lemma 5.3.8, because
the images of π1(U, 0) and π1(U

′, 0) in AutH5(X,Z) coincide. �
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[Pu] P.J. Puts, On some Fano threefolds that are sections of Grassman-
nians, Indag. Math. 44 (1982), 77–90.

[Re] M. Reid, Thesis, Cambridge (1972).

[Ro] L. Roth, Some properties of Grassmannians, Rend. di Mat. 5
(1951), 96–114.

[Se] B. Segre, Studio dei complessi quadratici di rette di S4, Atti Ist.
Veneto 88 (1929), 595–649.



113

[Shi] T. Shioda, Algebraic cycles on hypersurfaces in Pn, Adv. Studies in
Pure Math. 10 (1987), 717–732.

[Sn] D. Snow, Cohomology of twisted holomorphic forms on Grassmann
manifolds and quadric hypersurfaces, Math. Ann. 276 (1987), 159–
176.

[St] J.H.M. Steenbrink, Logarithmic embeddings of varieties with nor-
mal crossings and mixed Hodge structures, Math. Ann. 301 (1995),
105–118.

[SR] J.G. Semple and L. Roth, Introduction to Algebraic Geometry,
Clarendon Press, Oxford (1985) (paperback reprint).

[SSU] M.–H. Saito, Y. Shimizu and S. Usui, Variation of mixed Hodge
structure and Torelli problem, in: Adv. Studies in Pure Math. 10,
North Holland Publ. (1987), 649–693.

[Te1] T. Terasoma, Complete intersections of hypersurfaces: the Fermat
case and the quadric case, Japanese J. Math. 14 (1988), 309–384.

[Te2] T. Terasoma, Infinitesimal variation of Hodge structures and the
weak global Torelli theorem for complete intersections, Ann. of
Math. 132 (1990), 213–235.

[Ty1] A.N. Tyurin, Five lectures on three dimensional varieties, Russian
Math. Surveys 27 (1972), 1–53.

[Ty2] A.N. Tyurin, On intersections of quadrics, Russian Math. Surveys
30 (1975), 51–105.

[V1] C. Voisin, Sur une conjecture de Griffiths et Harris, in: Algebraic
curves and projective geometry, Proc. Conf. Trento 1988, Lecture
Notes in Math. 1389 (1989), 270–275.

[V2] C. Voisin, lectures at Sophia–Antipolis, 1991.

[V3] C. Voisin, Une approche infinitésimale du théorème de H. Clemens
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