A TORELLI TYPE THEOREM FOR THE MODULI SPACE OF RANK TWO CONNECTIONS ON A CURVE

INDRANIL BISWAS AND JAN NAGEL

ABSTRACT. Let (X, x_0) be a pointed Riemann surface of genus $g \geq 3$, and let \mathcal{M}_X be the moduli space parametrizing logarithmic $\mathrm{SL}(2, \mathbb{C})$ -connections on X that are singular exactly over x_0 and have residue $-\mathrm{Id}/2$. We show that the moduli space \mathcal{M}_X determines X up to isomorphism.

RÉSUMÉ. Soit (X, x_0) une surface de Riemann pointée de genre $g \geq 3$, et soit \mathcal{M}_X l'espace des modules des $\mathrm{SL}(2, \mathbb{C})$ -connexions logarithmiques qui ont une singularité exactement en x_0 et ont pour résidu $-\mathrm{Id}/2$. On démontre que l'espace des modules \mathcal{M}_X détermine X à isomorphisme près.

VERSION FRANÇAISE ABRÉGÉE. Soit X une courbe algébrique lisse sur \mathbb{C} de genre $g \geq 3$. Dans cette note, on considère l'espace des modules \mathcal{M}_X des couples (E, D), où E est un fibré vectoriel de rang 2 sur X et D est une connexion logarithmique sur E qui est singulière en exactement un point $x_0 \in X$ avec résidu $-\frac{\mathrm{Id}}{2}$. L'espace \mathcal{M}_X ne dépend pas du choix de x_0 . Le résultat principal est le théorème suivant.

Théorème. Soient X et Y des courbes lisses de genre $g \ge 3$. Si $\mathcal{M}_X \cong \mathcal{M}_Y$, alors $X \cong Y$.

L'idée de la démonstration est de se ramener au théorème de Torelli classique. On considère l'ouvert \mathcal{M}_X^0 de \mathcal{M}_X des couples (E, D) tels que le fibré E est stable. Cet ouvert admet un morphisme vers l'espace des modules \mathcal{N}_X des fibrés stables de rang 2 dont les fibres sont des espaces affines. Les espaces \mathcal{M}_X^0 et \mathcal{N}_X ont donc la même cohomologie. On montre que le complémentaire $\mathcal{M}_X \setminus \mathcal{M}_X^0$ est de codimension ≥ 3 . Ceci implique que $H^3(\mathcal{M}_X,\mathbb{Z}) \cong H^3(\mathcal{M}_X^0,\mathbb{Z})$. Si on combine les résultats précédents avec l'isomorphisme $H^3(\mathcal{N}_X,\mathbb{Z}) \cong H^1(X,Z)$ démontré par Mumford et Newstead [6], on obtient un isomorphisme de structures de Hodge $H^3(\mathcal{M}_X) \cong H^1(X)$ qui entraîne un isomorphisme entre la Jacobienne intermédiaire $J^2(\mathcal{M}_X)$ et la Jacobienne J(X).

Pour terminer la démonstration, on montre qu'on peut retrouver la polarisation principale de $J^2(\mathcal{M}_X)$ à partir de \mathcal{M}_X . On considère la famille $r: \mathcal{M} \to M_g^0$, définie sur un ouvert de l'espace des modules des courbes de genre g, dont la fibre au-dessus de X est \mathcal{M}_X . Puis on construit un homomorphisme de systèmes locaux $\psi : \bigwedge^2 R^3 r_* \mathbb{Z} \to R^{6g-6} r_* \mathbb{Z}$. En utilisant le calcul des nombres de Betti de l'espace des modules des fibrés de Higgs de rang 2 par Hitchin [5], on montre que l'image de ψ est un système local de rang un. Avec un petit argument supplémentaire, on retrouve la polarisation principale à partir de la restriction $\psi|_{[X]}$.

1. INTRODUCTION

Let X be a compact connected Riemann surface of genus $g \geq 3$. Fix a point $x_0 \in X$. Let \mathcal{M}_X denote the moduli space of all logarithmic connections (E, D) on X of the following type: rank(E) = 2 with $\bigwedge^2 E \cong \mathcal{O}_X(x_0)$ and D is a logarithmic connection on E singular exactly over x_0 with residue $-\frac{1}{2} \mathrm{Id}_{E_{x_0}}$ such that the logarithmic connection on $\bigwedge^2 E$ induced by D coincides with the de Rham connection on $\mathcal{O}_X(x_0)$. The moduli space \mathcal{M}_X is a smooth quasi-projective variety over \mathbb{C} . The isomorphism class of the variety \mathcal{M}_X does not depend on the choice of the base point x_0 .

We prove that the isomorphism class of the variety \mathcal{M}_X determines X. In other words, if (Y, y_0) is another pointed Riemann surface and $\mathcal{M}_Y \cong \mathcal{M}_X$, then $X \cong Y$.

We note that the biholomorphism class of the complex manifold \mathcal{M}_X is independent of the complex structure of X; the biholomorphism class depends only on g. Indeed, sending a logarithmic connection to its monodromy we get a holomorphic embedding

$$\rho : \mathcal{M}_X \longrightarrow \operatorname{Hom}(\pi_1(X - x_0), \operatorname{SL}(2, \mathbb{C})) / \operatorname{SL}(2, \mathbb{C})$$

The image of ρ is the complex submanifold $\mathcal{R} \subset \operatorname{Hom}(\pi_1(X - x_0), \operatorname{SL}(2, \mathbb{C}))/\operatorname{SL}(2, \mathbb{C})$ consisting of homomorphisms that send the loop around x_0 to $-\operatorname{Id}$. Therefore, the biholomorphism class of \mathcal{M}_X is independent of the complex structure of X.

2. Moduli space of connections

Let X be a compact connected Riemann surface of genus g, with $g \ge 3$. The holomorphic cotangent bundle of X will be denoted by K_X . Fix a base point $x_0 \in X$.

Given a holomorphic vector bundle E over X, a logarithmic connection on E singular over x_0 is a first order holomorphic differential operator

$$(2.1) D : E \longrightarrow E \otimes K_X \otimes \mathcal{O}_X(x_0)$$

which satisfies the Leibniz identity. Its residue $\operatorname{Res}(D, x_0)$ is an element of $\operatorname{End}(E_{x_0})$ [4].

Let \mathcal{M}_X denote the moduli space of all pairs (E, D) of the following type:

- (1) E is a rank two holomorphic vector bundle over X, with $\bigwedge^2 E = \mathcal{O}_X(x_0)$,
- (2) D is a logarithmic connection on E singular over x_0 , with residue $\operatorname{Res}(D, x_0) = -\frac{1}{2} \operatorname{Id}_{E_{x_0}}$, and
- (3) the logarithmic connection on $\bigwedge^2 E$ induced by D coincides with the logarithmic connection on $\mathcal{O}_X(x_0)$ defined by the de Rham differential.

The moduli space \mathcal{M}_X was constructed in [10] and [9] as an irreducible quasi-projective complex variety of dimension 6g - 6. As any connection in \mathcal{M}_X is irreducible [1, Lemma 2.3], the variety \mathcal{M}_X is smooth.

Let

$$\mathcal{M}^0_X \subset \mathcal{M}_X$$

be the Zariski open dense subset defined by all $(E, D) \in \mathcal{M}_X$ such that the underlying holomorphic vector bundle E is stable, and let

$$(2.2) Z := \mathcal{M}_X \setminus \mathcal{M}_X^0 \subset \mathcal{M}_X$$

be the complement.

Proposition 2.1. The (complex) codimension of the Zariski closed subset $Z \subset \mathcal{M}_X$ (see (2.2)) is g. In particular, the codimension of Z is at least three (recall that $g \geq 3$).

Proof. Let E be an irreducible vector bundle E over X of rank two such that $\bigwedge^2 E \cong \mathcal{O}_X(x_0)$. Consider the space of all logarithmic connections D on E singular over x_0 such that $(E, D) \in \mathcal{M}_X$. This space, which we denote by $\mathcal{A}(E)$, is an affine space for $H^0(X, \operatorname{ad}(E) \otimes K_X)$, where $\operatorname{ad}(E) \subset \operatorname{End}(E)$ is the subbundle defined by trace zero endomorphisms.

The group $\mathcal{G}(E) := \operatorname{Aut}(E)/\mathbb{C}^*$ acts on the affine space $\mathcal{A}(E)$. Since any logarithmic connection in $\mathcal{A}(E)$ is irreducible by [1, Lemma 2.3], the action of $\mathcal{G}(E)$ on $\mathcal{A}(E)$ is faithful. Hence the dimension of the space of isomorphism classes of logarithmic connections on E is

(2.3)
$$\dim \mathcal{A}(E) - \dim \operatorname{Aut}(E) + 1 = h^1(X, \operatorname{ad}(E)) - h^0(X, \operatorname{End}(E)) + 1 = 3g - 3.$$

If E is not semistable, there exists a line subbundle $L \subset E$ of degree $d \ge 1$ giving an exact sequence

(2.4)
$$0 \longrightarrow L \longrightarrow E \longrightarrow L^{-1}(x_0) := L^{-1} \otimes_{\mathcal{O}_X} \mathcal{O}_X(x_0) \longrightarrow 0.$$

If we fix L, the space of all isomorphism classes of extensions of the above type is parametrized by $H^1(X, L^2(-x_0))/\mathbb{C}^*$. We have $\operatorname{Hom}(L^{-1}(x_0), L)) \subset \operatorname{ad}(E)$, and

$$\dim H^1(X, L^2(-x_0)) - \dim H^0(X, L^2(-x_0)) = g - 1 - d \le g - 2.$$

Combining this with (2.3) we conclude that for fixed L, the dimension of the space of all $(E, D) \in \mathcal{M}_X$ such that E fits in an exact sequence as in (2.4) is at most 3g-3+g-3 = 4g-6. Since dim $J^d(X) = g$, this implies that the dimension of the subvariety Z in (2.2) is at most 4g-6+g = 5g-6. Since dim $(\mathcal{M}_X) = 6g-6$, the statement of the proposition follows.

Let \mathcal{N}_X denote the moduli space of stable vector bundles E over X of rank two with $\bigwedge^2 E \cong \mathcal{O}_X(x_0)$. We have a natural projection

(2.5)
$$\phi : \mathcal{M}_X^0 \longrightarrow \mathcal{N}_X,$$

where \mathcal{M}_X^0 is as in (2.2), that sends a pair (E, D) to E. Since $\mathcal{A}(E)$ (defined in the proof of Proposition 2.1) is an affine space for $H^0(X, \operatorname{ad}(E) \otimes K_X)$, it follows that the map ϕ in (2.5) makes \mathcal{M}_X^0 a $\Omega_{\mathcal{N}_X}^1$ -torsor over \mathcal{N}_X .

Given a stable vector bundle $E \in \mathcal{N}_X$, there is a unique unitary flat connection D_E on $E_{X \setminus \{x_0\}}$ such that $(E, D_E) \in \mathcal{M}_X^0$ [8]. Consequently, we obtain a C^{∞} section of the holomorphic fibration ϕ in (2.5)

(2.6)
$$\gamma : \mathcal{N}_X \longrightarrow \mathcal{M}_X^0 \subset \mathcal{M}_X$$

that sends E to (E, D_E) .

3. INTERMEDIATE JACOBIAN AND POLARIZATION

The intermediate Jacobian associated to $H^3(\mathcal{M}_X)$ is defined by

$$J^2(\mathcal{M}_X) = \operatorname{Ext}^1_{\operatorname{MHS}}(\mathbb{Z}(-2), H^3(\mathcal{M}_X)).$$

Carlson [3, Proposition 2] showed that

$$J^{2}(\mathcal{M}_{X}) \cong H^{3}(\mathcal{M}_{X}, \mathbb{C})/(F^{2}H^{3}(\mathcal{M}_{X}, \mathbb{C}) + H^{3}(\mathcal{M}_{X}, \mathbb{Z}))$$

A priori, $J^2(\mathcal{M}_X)$ is a generalized torus. In our case it is an abelian variety because of the following result.

Lemma 3.1. We have an isomorphism of Hodge structures $H^3(\mathcal{M}_X, \mathbb{Z}) \cong H^1(X, \mathbb{Z})(-1)$.

Proof. Consider the Zariski closed subset $Z \subset \mathcal{M}_X$ defined in (2.2). By Proposition 2.1 we have $\operatorname{codim}_{\mathcal{M}_X}(Z) \geq 3$. Hence $H^3_Z(\mathcal{M}_X) = H^4_Z(\mathcal{M}_X) = 0$ (weak purity) and

$$j^* : H^3(\mathcal{M}_X, \mathbb{Z}) \longrightarrow H^3(\mathcal{M}^0_X, \mathbb{Z})$$

is an isomorphism.

Since $\varphi : \mathcal{M}^0_X \to \mathcal{N}_X$ is an affine fiber bundle, the induced homomorphism $\varphi^* : H^3(\mathcal{N}_X, \mathbb{Z}) \longrightarrow H^3(\mathcal{M}^0_X, \mathbb{Z})$ is an isomorphism.

Mumford and Newstead showed that there exists an isomorphism

$$\Gamma_{X*} : H^1(X, \mathbb{Z})(-1) \longrightarrow H^3(\mathcal{N}_X, \mathbb{Z})$$

induced by a certain correspondence Γ_X between \mathcal{N}_X and X; see [6, page 1201, Theorem]. The correspondence Γ_X in question is the second Chern class of the universal adjoint bundle over $X \times \mathcal{N}_X$. The isomorphism $(j^*)^{-1} \circ \varphi^* \circ \Gamma_{X*} : H^1(X, \mathbb{Z})(-1) \longrightarrow H^3(\mathcal{M}_X, \mathbb{Z})$ gives the required isomorphism in the lemma. \Box

Corollary 3.2. We have an isomorphism $J^2(\mathcal{M}_X) \cong J(X)$. In particular, $J^2(\mathcal{M}_X)$ is an abelian variety.

Our next aim is to recover the principal polarization on J(X) from \mathcal{M}_X . To this end, we consider the universal curve

$$\mathcal{C} = M_{g,1}^0 \xrightarrow{p} M_g^0$$

over the moduli space of curves of genus g without nontrivial automorphisms. Let

$$\mathcal{J} \xrightarrow{q} M_g^0, \ \mathcal{M} \xrightarrow{r} M_g^0$$

be the families whose fibers over $[X] \in M_g^0$ are $q^{-1}(X) = J(X), r^{-1}(X) = \mathcal{M}_X$.

Consider the local system $R^2q_*\mathbb{Z}$ on M_g^0 . For any curve X, the Jacobian J(X) has a canonical principal polarization which gives a constant sublocal system

$$\mathbb{L} \subset R^2 q_* \mathbb{Z}.$$

Proposition 3.3. The local system $R^2q_*\mathbb{Z}$ on M_g^0 decomposes as $R^2q_*\mathbb{Z} = \mathbb{L} \oplus (R^2q_*\mathbb{Z})_0$.

The local system $(R^2q_*\mathbb{Z})_0$ is irreducible.

Proof. Since $(R^2q_*\mathbb{Z})_0$ is torsionfree, it suffices to show that the local system of primitive cohomology $(R^2q_*\mathbb{C})_{\text{prim}} = (R^2q_*\mathbb{Z})_0 \otimes_{\mathbb{Z}} \mathbb{C}$ is irreducible. If we fix a base point $X_0 \in M_g^0$, then the mapping class group (the monodromy for the family p) surjects onto $\operatorname{Aut}(H^1(X_0,\mathbb{Z})) \cong \operatorname{Sp}(2g,\mathbb{Z})$, and the Borel density theorem says that $\operatorname{Sp}(2g,\mathbb{Z})$ is Zariski dense in $\operatorname{Sp}(2g,\mathbb{C})$ [2]. Since the Lefschetz decomposition of $H^i(J(X_0),\mathbb{C})$ for the canonical principal polarization on $J(X_0)$ corresponds to the decomposition of the $\operatorname{Sp}(H^1(X_0,\mathbb{C}))$ -module $H^i(J(X_0),\mathbb{C}) = \bigwedge^i H^1(X_0,\mathbb{C})$ into irreducible components, the proposition follows. \square

We have $H^2(\mathcal{M}_X, \mathbb{Z}) \cong H^2(\mathcal{N}_X, \mathbb{Z})$ (follows from Proposition 2.1), and $H^2(\mathcal{N}_X, \mathbb{Z}) = \mathbb{Z}$ [7, Theorem 3]. Therefore, $R^2 r_* \mathbb{Z} \cong \mathbb{Z}$ (the ample generator of $H^2(\mathcal{N}_X, \mathbb{Z})$ gives a trivialization of $R^2 r_* \mathbb{Z}$). Let η denote the section of $R^2 r_* \mathbb{Z}$ given by the ample generator of $H^2(\mathcal{N}_X, \mathbb{Z})$.

Consider the homomorphism of local systems

(3.1)
$$\psi : \bigwedge^2 R^3 r_* \mathbb{Z} \longrightarrow R^{6g-6} r_* \mathbb{Z}$$

defined by $\psi(\alpha \wedge \beta) = \alpha \cup \beta \cup \eta^{3g-6}$.

Lemma 3.4. The image of ψ is a rank one local system.

Proof. The earlier mentioned result of Mumford and Newstead says that we have an isomorphism of local systems

(3.2)
$$\Gamma_* : R^1 p_* \mathbb{Z} \longrightarrow R^3 r_* \mathbb{Z}$$

defined by the correspondence Γ on the fiber product $M_{g,1}^0 \times_{M_g^0} \mathcal{M}$ given by the second Chern class of the universal adjoint bundle; note that $R^1 p_* \mathbb{Z}$ is self-dual.

Define

$$\psi' = \psi \circ \bigwedge^2 \Gamma_* : \bigwedge^2 R^1 p_* \mathbb{Z} \longrightarrow R^{6g-6} r_* \mathbb{Z}$$

We recall that the local system $(R^2q_*\mathbb{Z})_0$ is irreducible of rank g(2g-1)-1 (see Proposition 3.3). We also know that $R^2q_*\mathbb{Z} \cong \bigwedge^2 R^1p_*\mathbb{Z}$.

On the other hand, the rank of $R^{6g-6}r_*\mathbb{Z}$ is g [5, Theorem 7.6]. As an irreducible local system does not admit any nonzero homomorphism to a local system of lower rank, the homomorphism ψ' vanishes on the sub-local system of $\bigwedge^2 R^1 p_*\mathbb{Z}$ corresponding to $(R^2q_*\mathbb{Z})_0$. Therefore, the image of ψ coincides with the image of \mathbb{L} (after identifying $\bigwedge^2 R^1 p_*\mathbb{Z}$ with $R^2 q_*\mathbb{Z}$). Hence the rank of the image of ψ is at most one. Let $\xi \in H_{6g-6}(\mathcal{M}_X, \mathbb{Z})$ be the homology class defined by the image of \mathcal{N}_X by the map γ in (2.6). Let ω denote the first Chern class of the ample generator of $\operatorname{Pic}(\mathcal{N}_X) \cong \mathbb{Z}$. Since the homomorphism

$$\bigwedge^2 H^3(\mathcal{N}_X,\mathbb{Z}) \longrightarrow \mathbb{Z}$$

defined by

$$\alpha \bigwedge \beta \longmapsto \int_{\mathcal{N}_X} \alpha \cup \beta \cup \omega^{3g-6}$$

is nonzero, we conclude that the composition

$$\bigwedge^2 H^3(\mathcal{M}_X,\mathbb{Z}) \xrightarrow{\psi|_{[X]}} H^{6g-6}(\mathcal{M}_X,\mathbb{Z}) \xrightarrow{\cap \xi} \mathbb{Z}$$

is nonzero. Hence the homomorphism ψ in (3.1) is nonzero. This completes the proof of the lemma.

For any $[X] \in M_g^0$, the homomorphism $\psi|_{[X]}$ gives an element

(3.3)
$$\theta \in \operatorname{Hom}(\bigwedge^2 H^3(\mathcal{M}_X,\mathbb{Z}),\mathbb{C}) = H^2(J^2(\mathcal{M}_X),\mathbb{C})$$

up to a scalar multiplication. More precisely, θ is a complex line in $H^2(J^2(\mathcal{M}_X, \mathbb{C}))$.

Theorem 3.5. Let X and Y be smooth curves of genus $g \ge 3$. If $\mathcal{M}_X \cong \mathcal{M}_Y$, then $X \cong Y$.

Proof. We have to show that it is possible to recover the pair $(J(X), \Theta)$ from \mathcal{M}_X . The result then follows from the classical Torelli theorem. By Corollary 3.2, the variety \mathcal{M}_X determines J(X) up to isomorphism.

In the proof of Lemma 3.4 we saw that ψ vanishes on $(R^2q_*\mathbb{Z})_0$. Hence the complex line θ (defined in (3.3)) contains the canonical principal polarization.

We recall that a principal polarization ν on in abelian variety A is an element of $H^2(A,\mathbb{Z})$ which is ample and satisfies the condition $\nu^{\dim A} \cap [A] = 1$. In particular, the integral cohomology class ν is indivisible.

We have $\theta \cap H^2(J^2(\mathcal{M}_X), \mathbb{Z}) \neq 0$ (as θ contains the canonical principal polarization). Hence the \mathbb{Z} -module $\theta \cap H^2(J^2(\mathcal{M}_X), \mathbb{Z}) \cong \mathbb{Z}$ has two generators. Since the principal polarization is an ample class, exactly one of the two generators of $\theta \cap H^2(J^2(\mathcal{M}_X), \mathbb{Z})$ can be the principal polarization. Therefore, we have constructed the canonical principal polarization on $J^2(\mathcal{M}_X)$ from ψ . This completes the proof of the theorem.

Remark 3.6. It is not clear whether this argument can be generalized to bundles of arbitrary rank. The missing ingredient is an estimate on the dimension of $H^{\dim_{\mathbb{C}}}\mathcal{M}_X(\mathcal{M}_X,\mathbb{C})$.

Acknowledgments. We thank Chris Peters for helpful discussions.

References

- [1] I. Biswas, N. Raghavendra, Line bundles over a moduli space of logarithmic connections on a Riemann surface, Geom. Funct. Anal. (to appear).
- [2] A. Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960) 179–188.
- [3] J.Carlson, Extensions of mixed Hodge structures, Journées de géométrie algébrique d'Angers 1979, Sijthoff & Noordhoff, Alphen aan den Rijn (1980) 107–127.
- [4] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math. 163, Springer-Verlag, Berlin, 1970.
- [5] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59–126.
- [6] D. Mumford, P. Newstead, Periods of a moduli space of bundles on curves, Amer. Jour. Math. 90 (1968) 1200-1208.
- [7] P. Newstead, Topological properties of some spaces of stable bundles, Topology 6 (1967) 241–262.
- [8] M.S. Narasimhan, C.S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965) 540–567.
- [9] N. Nitsure, Moduli of semistable logarithmic connections, Jour. Amer. Math. Soc. 6 (1993), 597–609.
- [10] C.T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

Université Lille 1, Mathématiques – Bât. M2, F-59655 Villeneuve d'Asc
q ${\rm Cedex},$ France

E-mail address: nagel@math.univ-lille1.fr