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1 Introduction

Let X be a smooth, irreducible, projective variety defined over C, let L be
a line bundle on X and let D ⊂ X be an effective, reduced and connected
divisor. Set M = OX(D). A natural problem related to this framework is
to study the relationship between the Koszul cohomology groups Kp,q(X,L)
and Kp,q(D,LD).

In the case where D is smooth, M. Green [5, Theorem (3.b.1)] has proved,
with the extra assumptions H0(X,L −M) = 0 and H1(X, qL −M) = 0 for
all q ≥ 0, that there exists a long exact sequence

→ Kp,q(X,−M,L) → Kp,q(X,L) → Kp,q(D,LD) → Kp−1,q+1(X,−M,L) →

(connectedness actually follows directly from the vanishing conditions on
the cohomology). Under the same smoothness hypothesis on D, another
result of similar flavour was proved in [5, Theorem (3.b.7)]: if X is regular
(i.e. H1(X,OX ) = 0), L = M , and H1(X, qL) = 0 for all q ≥ 1, then
Kp,q(X,L) ∼= Kp,q(D,LD), for all p and q.

A simple analysis of Green’s proofs shows that smoothness of D is not
necessary, and similar statements hold in the enlarged settings that we men-
tioned at the beginning, namely D to be reduced and connected.

In this paper we study the relationship between some of the Koszul
groups of X and D under assumptions weaker than Green’s ones. Our main
result is the following.

Theorem 1.1. Let X be a smooth, irreducible, projective, regular variety,
let D 6= 0, and E 6= 0 be two effective divisors on X, and denote d =
h0(D,OD(D)), e = h0(E,OE(E)), ∆ = D + E, and L = OX(∆). Suppose
that both D and ∆ are reduced and connected. If Kp+1,1(D,LD) = 0 for an
integer p > 0 and one of the following two conditions is satisfied:

(i) e = 0, or
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(ii) p ≥ d,

then we have an injective map Kp+e,1(X,L) → Kp,1(D,LD).

In particular, we obtain the following Corollary.

Corollary 1.2. Under the assumptions of Theorem 1.1, if moreover
Kp,1(D,LD) = 0, then Kp+e,1(X,L) = 0.

We refer to Sections 4 and 5 for applications, and examples. They also
witness for sharpness in the statement of Corollary 1.2.

One can enquire next about what happens when dropping the regularity
condition. In the most general setting, we can prove the following slightly
weaker result.

Proposition 1.3. Let X be a smooth, irreducible, projective variety, and
let L and M be line bundles on X. Let D ∈ |M | be an effective, reduced,
connected divisor, and set e = h0(X,L − M). Let p be a positive integer.

(i) If Kp+1,1(D,LD) = 0 then we have an injective map Kp+e,1(X,L) →
Kp,1(D,LD);

(ii) If Kp,1(D,LD) = 0 then Kp+e,1(X,L) = 0.

Remark 1.4. The case e = 0 of Proposition 1.3 (ii) can be deduced from
the long exact sequence obtained by Green [5, Thm. (3.b.1)]. But in our
case one does not need the extra assumption H1(X, qL − M) = 0, q ≥ 0.

The outline of the paper is as follows. Section 2 is devoted to some
general facts about base change and vanishing of Koszul cohomology for
graded modules over a symmetric algebra. These results will be used in
Section 3 for the proofs of Theorem 1.1 and of Proposition 1.3. In the last
two sections, we present some applications.

Green’s generic conjecture was used in [3] to prove Green-Lazarsfeld’s
gonality conjecture for generic curves of large gonality, with the sole excep-
tion of the generic gonality in the odd genus case. In Section 4, we try to
go in the opposite direction, from the gonality conjecture to Green conjec-
ture. We concentrate on curves on K3 surfaces, as they seem to be the most
appropriate for proving generic syzygy conjectures. The attempt to have a
better picture of the way the two conjectures were related was actually the
original motivation for our work. For the moment, we are not able to give
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a full explanation of the phenomenon, and the connections between both
conjectures seem to us to be much deeper than exposed here, or as found in
[2] and [3].

The last application of Corollary 1.2 is a short discussion of the naturality
of Voisin’s method of proving Green’s conjecture for generic curves of odd
genus, see [15]; this is treated in Section 5.

2 Vanishing of Koszul cohomology and base change

Let V be a finite–dimensional C–vector space and let B be a graded module
over the symmetric algebra S(V ). We say that B satisfies hypothesis (∗) if

(∗) Bq = 0 for all q < 0 and Kp,0(B,V ) = 0 for all p ≥ 1.

Lemma 2.1.

(i) Let W ⊂ V be a linear subspace. If B satisfies (∗), the natural map
Kp,1(B,W ) → Kp,1(B,V ) is injective if p > 0.

(ii) If B′ ⊂ B is a graded S(V )–submodule and B′

q−1 = Bq−1 then
Kp,q(B

′, V ) ⊂ Kp,q(B,V ) for all p.

Proof: For (i), choose a flag of linear subspaces

W = W0 ⊂ W1 ⊂ . . . ⊂ Wc = V

such that dim (Wi/Wi−1) = 1 for i = 1, . . . , c. Set Li = Wi/Wi−1. The
short exact sequence

0 →
∧pWi−1 →

∧pWi →
∧p−1Wi−1 ⊗ Li → 0

induces an exact sequence

Kp,0(B,Wi−1) ⊗ Li → Kp,1(B,Wi−1) → Kp,1(B,Wi).

As Kp,0(B,Wi−1) = 0 for all p > 0 by hypothesis (∗), we obtain a chain of
inclusions

Kp,1(B,W ) = Kp,1(B,W0) ⊂ . . . ⊂ Kp,1(B,Wc) = Kp,1(B,V ).

To prove (ii), set B′′ = B/B′ and use the exact sequence

Kp+1,q−1(B
′′, V ) → Kp,q(B

′, V ) → Kp,q(B,V ).

�
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For every linear subspace W ⊂ V , and every ℓ ∈ Z, there exists a spectral
sequence of change of base [6, Proposition (1.b.1)]

Ep,q
1 = K−q,p+q(B,W ) ⊗

∧ℓ−p(V/W ) ⇒ Kℓ−p−q,p+q(B,V ).

If B is a graded S(V/W )–module, B is an S(V )–module that is trivial as
S(W )–module. In this case

Ep,q
2 =

∧
−qW ⊗ Kℓ−p,p+q(B,V/W ).

Lemma 2.2. Let W ⊂ V be a linear subspace of dimension e and let B be a
graded S(V/W )–module. If B satisfies condition (∗) and Kp+1,1(B,V/W ) =
0 for an integer p > 0, we have an isomorphism Kp,1(B,V/W ) ∼=
Kp+e,1(B,V ).

Proof: We use Green’s spectral sequence mentioned above.
If Kp+1,1(B,V/W ) = 0 then Kk,1(B,V/W ) = 0 for all k ≥ p + 1, hence

the terms Ei,1−i
2 = Kℓ−i,1(B,V/W ) ⊗

∧i−1W , where ℓ = p + e + 1, vanish

if i 6= e + 1. For i = e + 1 we have Ee+1,−e
2

∼= Ee+1,−e
∞ , as all the dif-

ferentials arriving at and starting from Ee+1,−e
r are zero for r ≥ 2. Hence

we obtain E1
∞

= Ee+1,−e
∞ , i.e., Kp+e,1(B,V ) ∼= Kp,1(B,V/W ) ⊗

∧e W ∼=
Kp,1(B,V/W ). �

3 Proofs of main results

Proof of Theorem 1.1: We have exact sequences of sheaves (decomposi-
tion sequences, cf. [4, pp. 47–48])

0 → OE(−D) → O∆ → OD → 0 (1)

0 → OD(−E) → O∆ → OE → 0. (2)

Take the tensor product of the exact sequence (2) with O∆(∆) to obtain an
exact sequence

0 → OE(E) → L∆ → LD → 0.

Set W = H0(E,OE(E)), V = H0(∆, L∆), U = H0(D,LD) and

B0 =
⊕

qH
0(E,Lq−1 ⊗OE(E)), B1 =

⊕
qH

0(∆, Lq
∆

),

B =
⊕

qH
0(D,Lq

D), B2 = B1/B0.
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The exact sequence
0 → W → V → U

induces an inclusion V/W ⊂ U . With the notation above, we have
Kp,1(B,U) = Kp,1(D,LD). As

B0 = C, B1 = U, Bq = 0 for all q < 0

the S(U)–module B satisfies hypothesis (∗). By Lemma 2.1 (i), we have
an inclusion Kp,1(B,V/W ) ⊂ Kp,1(B,U). Using Lemma 2.2, we obtain
an isomorphism Kp,1(B,V/W ) ∼= Kp+e,1(B,V ) (remark that vanishing of
Kp+1,1(B,U) implies vanishing of Kp+1,1(B,V/W )). Since B2

0 = B0 = C

it follows from Lemma 2.1 (ii) that Kp+e,1(B
2, V ) ⊂ Kp+e,1(B,V ), hence

Kp+e,1(B
2, V ) injects into Kp,1(B,U).

Regularity of X, and assumptions we have made on ∆, give rise to an iso-
morphism Kp+e,1(X,L) ∼= Kp+e,1(∆, L∆). This result follows directly from
the proof of [5, Theorem (3.b.7)] (see also [1, Remark 1.3]). By definition,
Kp+e,1(∆, L∆) = Kp+e,1(B

1, V ). The exact sequence of S(V )–modules

0 → B0 → B1 → B2 → 0

induces an exact sequence

Kp+e,1(B
0, V ) → Kp+e,1(B

1, V ) → Kp+e,1(B
2, V ).

To finish the proof, it suffices to show that Kp+e,1(B
0, V ) = 0. The first case

is clear: if e = 0 then B0
1 = 0, hence Kp+e,1(B

0, V ) = 0. To deal with the
second case, we define U ′ = H0(E,LE), W ′ = H0(D,OD(D)) and consider
the exact sequence

0 → W ′ → V → V/W ′ → 0.

If Kp+e−d,1(B
0, V/W ′) = 0, then Kp+e,1(B

0, V ) = 0 by Lemma 2.2. Since
B0

q = 0 for all q ≤ 0, the S(U ′)–module B0 satisfies hypothesis (∗). Hence
the vanishing of Kp+e−d,1(B

0, V/W ′) would follow from the vanishing of
Kp+e−d,1(B

0, U ′) using Lemma 2.1 (i). We identify

Kp+e−d,1(B
0, U ′) = Kp+e−d,1(E,OE(−DE), LE).

If p ≥ d, then p + e − d ≥ e, hence Kp+e−d,1(E,OE(−DE), LE) = 0 by
Green’s vanishing theorem [5, Theorem (3.a.1)]. �

Proof of Proposition 1.3: The proof of Theorem 1.1 goes through if we re-
place V by H0(X,L) and B1 by ⊕qH

0(X,Lq) and note that Kp,1(X,−M,L)
= 0 if p ≥ e by Green’s vanishing theorem [5, Theorem (3.a.1)]. �
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4 Relations between Green’s conjecture and the

gonality conjecture

Let L be a line bundle on a smooth projective variety X, and set r =
h0(X,L) − 1. Following [7, p. 87] we say that L satisfies property (Mk) if

Kp,q(X,L) = 0 for all (p, q) such that p ≥ r − k and q 6= 2.

Green and Lazarsfeld [7, Conjecture (3.7)] conjectured that for line bundles
of sufficiently large degree on curves this property should be connected to
the gonality of the curve.

Conjecture 4.1. (Green–Lazarsfeld’s gonality conjecture, strong
form) Let C be a smooth curve of genus g, and let L be a line bundle
on C. If deg L ≥ 2g + k then L satisfies property (Mk) if and only if C does
not carry a g1

k.

In the proofs of [1, Theorem 8.1], and [2, Theorem 2], one uses a vanishing
of Koszul cohomology for some curves on a certain rational surface, com-
patible with the gonality conjecture, to prove Green’s conjecture for other
curves lying on the same surface. This suggests that there might be a very
subtle connection between the two conjectures, at least for a generic choice
curves in some gonality strata. We propose here a further investigation of
this possibility.

Example 4.2 We consider a K3 surface S such that Pic(S) = Z[D]⊕Z[F ]
with D a smooth, connected, curve of genus g on S such that gon(D) = k
is computed by the restriction of an elliptic pencil |F | on S. For all pairs
(g, k) such that g ≥ 3 and 2 ≤ k ≤ [g+3

2
] such surfaces exist [9, Thm. 1.1

and Prop. 2.1].
Let F1 and F2 be two distinct elliptic curves in the elliptic pencil, and put

E = F1+F2, ∆ = D+E and L = OS(∆). We have deg(LD) = 2g−2+2k and
h0(D,LD) = g − 1 + 2k. As OD(D) = KD, we have d = h0(D,OD(D)) = g.
Using [11, Prop. 2.6] we obtain h1(S,OS(2F )) = 1 and h0(S,OS(2F )) = 3,
hence e = 2. As deg LD ≥ 2g + k, the gonality conjecture predicts that
Kp,1(D,LD) = 0 if p ≥ h0(D,LD)− k = g− 1+ k. Hence, if we assume that
the gonality conjecture holds for D then Kp,1(S,L) = 0 for all p ≥ g + 1 + k
by Corollary 1.2. As D2 > 0 and D is irreducible, the linear system |D|
is base–point free [11, Thm. 3.1]. The linear system |D + 2F | obtained by
adding a multiple of the base–point free pencil |F | is then also base–point
free and contains a smooth, irreducible curve Γ by Bertini’s theorem. Its
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genus is γ = g + 2k, and its gonality and Clifford index are gon(Γ) = k,
Cliff(Γ) = k − 2 (cf. [9, Proof of Prop. 2.1]). Using [5, Theorem (3.b.7)] we
obtain Kp,1(Γ,KΓ) = 0 for all p ≥ γ − k + 1. By Green’s duality theorem
[5, Corollary (2.C.10)] we have Kp,1(Γ,KΓ)∨ ∼= Kγ−p−2,2(Γ,KΓ). Hence

Kp,2(Γ,KΓ) = 0 if p ≤ k − 3.

This is exactly the vanishing predicted by Green’s conjecture for the curve
Γ. As it is known that Kk−2,2(Γ,KΓ) 6= 0 [5, Appendix], this example shows
that Corollary 1.2 is sharp for e > 0.

Remark 4.3 The conclusion ”gonality conjecture for D ⇒ Green’s conjec-
ture for Γ” of Example 4.2 remains true if D is a smooth, connected curve
on a K3 surface S such that the gonality of D is computed by an elliptic
pencil |F | on S. For example, such an elliptic pencil on S also exists if the
Clifford index of D is small compared to the genus; see [10, Theorem 3.5].

5 A comment on Voisin’s proof of Green’s conjec-

ture

In two recent papers [14], [15], C. Voisin realised a major breakthrough in the
theory of syzygies of curves by proving Green’s conjecture for generic curves.
Using a completely new way of computing Koszul cohomology spaces, she
verified Green’s conjecture for curves lying on some K3 surfaces. We try to
explain, using our Corollary 1.2, why her choice in [15] is a natural one.

In [15] Voisin considers a K3 surface S whose Picard group is generated
by a very ample divisor D, where D is a smooth curve of odd genus 2k + 1,
and by a smooth rational curve E which intersects D in two distinct points
p and q. If Green’s conjecture is true for generic curves of odd genus, then
it holds for any curve of odd genus and maximal gonality [8]. In particular,
Green’s conjecture then holds for D and Kk,1(D,KD) = 0. Using Theorem
3 of [1], this would give Kk+1,1(D,KD + p + q) = 0. Since KD + p + q is the
restriction of the line bundle L = OS(D + E) we can apply Corollary 1.2,
with e = 0, to obtain Kk+1,1(S,OS(D+E)) = 0. So we obtain the following
statement.

(∗∗) If Green’s conjecture holds for the generic curve of odd genus, then
Kk+1,1(S,OS(D + E)) = 0.

The first step in Voisin’s proof is to prove Kk+1,1(S,OS(D + E)) = 0,
using methods similar to those in [14]; see [15, Thm.5]. In the second step she
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proves the converse of the above statement (∗∗) to obtain Green’s conjecture
for generic curves of odd genus.
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and Université de Grenoble 1, Laboratoire de Mathématiques, Institut
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Mathématiques – Bât. M2
F-59655 Villeneuve d’Ascq Cedex
FRANCE
email: nagel@agat.univ-lille1.fr

9


