
Lectures on Nori’s connectivity theorem

J. Nagel

The aim of these lectures is to discuss Nori’s connectivity theorem and its
applications to the theory of algebraic cycles. I have tried to clarify some of
the underlying ideas by emphasizing the relationship of Nori’s theorem with
the theorems of Griffiths and Green–Voisin on the image of the Abel–Jacobi
map for hypersurfaces in projective space.

The notes are divided into 6 sections that roughly correspond to my 6
lectures at the summer school in Grenoble. I have added a short Appendix
on Deligne cohomology.

1. Normal functions

2. Griffiths’s theorem

3. The theorem of Green–Voisin

4. Nori’s connectivity theorem

5. Sketch of proof of Nori’s theorem

6. Applications of Nori’s theorem

A Deligne cohomology.

I would like to thank the organisers of the summer school, Chris Peters
and Stefan Müller–Stach, for giving me the opportunity to present these
lectures and for creating a very pleasant atmosphere for discussions with my
fellow lecturers and the other participants.
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1 Normal functions

Let X be a smooth projective variety over C. The main invariants used to
study the Chow group CHp(X) of codimension p cycles on X are the cycle
class map

clpX : CHp(X) → H2p(X,Z)

and the Abel–Jacobi map

ψp
X : CHp

hom(X) → Jp(X),

which is defined on the kernel of clpX ; its target is the intermediate Jacobian

Jp(X) = H2p−1(X,C)/F pH2p−1(X,C) + H2p−1(X,Z)/tors
∼= F n−p+1H2n−2p+1(X,C)∨/H2n−2p+1(X,Z).

The Hodge conjecture gives a conjectural description of the image of clpX .
Little is known about the kernel and the image of ψp

X , except in special cases
such as curves and Fano threefolds. A natural idea is to consider a family
of smooth projective varieties {Xs}s∈S and to study holomorphic sections of
the fiber space of intermediate Jacobians over S to obtain information about
cycles on the general fiber. Such sections are called normal functions; they
were introduced by Poincaré for families of curves on algebraic surfaces and
by Griffiths for algebraic cycles on higher–dimensional varieties.

Let f : X → S be a smooth projective morphism of quasi–projective
varieties. Suppose that the fibers Xs = f−1(s) have dimension 2m− 1. The
intermediate Jacobians Jm(Xs) of the fibers fit together to give a holomorphic
fiber space of complex tori

Jm(X/S) = ∪s∈SJm(Xs).

The sheaf H2m−1
Z = R2m−1f∗Z/tors is a local system of abelian groups. The

associated Hodge bundle H2m−1 = H2m−1
Z ⊗Z OS is a vector bundle that

carries a flat connection ∇, the Gauss–Manin connection. The Hodge bundle
is filtered by holomorphic subbundles Fp. The sheaf

Jm = H2m−1/Fm + H2m−1
Z

is the sheaf of sections of the fibration π : Jm(X/S) → S.
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Definition 1.1 A normal function is a holomorphic section ν ∈ H0(S,Jm).

The exact sequence of sheaves

0 → H2m−1
Z → H2m−1/Fm → Jm → 0

induces a map ∂ : H0(S,Jm) → H1(S, H2m−1
Z ) that associates to a normal

function ν its cohomological invariant ∂(ν) ∈ H1(S, H2m−1
Z ). The Gauss–

Manin connection ∇ : H2m−1 → Ω1
S ⊗H2m−1 restricts to a map

∇ : Fm → Ω1
S ⊗Fm−1

by Griffiths transversality. As ∇(H2m−1
Z ) = 0 we obtain an induced map

∇ : Jm → Ω1
S ⊗H2m−1/Fm−1

whose kernel is denoted by Jm
h . The holomorphic sections of this sheaf are

called quasi–horizontal normal functions.

Definition 1.2 Let f : X → S be a smooth projective morphism. The
group Zp(X/S) of relative codimension p cycles over S is the free abelian
group generated by irreducible subvarieties Z ⊂ X that are flat of relative
dimension dim X − dim S − p over S.

We write Zm
hom(X/S) for the subgroup of relative codimension m cycles

whose restriction to every fiber Xs is homologically equivalent to zero. Given
Z ∈ Zm

hom(X/S), it is possible to choose a family of (2m − 1)–chains γ =
(γs) such that ∂γs = Zs for all s ∈ S. We then obtain a C∞ section ν̃ ∈
Γ(S, (Fm)∨) by setting

〈ν̃(s), ωs〉 =

∫

γs

ωs

for a C∞ section ω = (ωs) ∈ Γ(S,Fm). By projection to Jm we obtain a
section νZ ∈ Γ(S,Jm).

Let ξ be a vector field on X. There exists a contraction map

iξ : Ak(X) → Ak−1(X)

that is defined as the unique derivation that equals the evaluation map on 1–
forms and is linear for C∞ functions. Let ξ be a local lifting of the vector field
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∂
∂s

. Locally, the flow associated to ξ defines diffeomorphisms ϕs : X0 → Xs

(Ehresmann’s fibration theorem). The Lie derivative of a family ω = (ωs) of
differential k–forms with respect to ξ is defined by

Lξω =
∂

∂s
|s=0ϕ

∗
sωs.

A similar formula defines Lξ̄ω if ξ̄ is a local lifting of ∂
∂s̄

. The Lie derivative
can be computed using the Cartan formula

Lξω = diξΩ + iξdΩ

where Ω is a k–form on X such that Ω|Xs = ωs for all s ∈ S. By definition,
the Gauss–Manin derivative along ξ of a family of closed forms ω is given by

∇ξω = [Lξω].

This is well–defined and maps families of closed forms to families of closed
forms since [Lξ, d] = 0 by the Cartan formula.

Proposition 1.3 The section ν = νZ ∈ Γ(S,Jm) associated to a relative
cycle Z ∈ Zm

hom(X/S) is a quasi–horizontal normal function.

Proof: It suffices to cover S by contractible open subsets and to verify the
assertion locally. Hence we may assume that S is a disc. Let A1(X/S) =
A1(X)/f ∗A1(S) be the sheaf of relative differentiable 1–forms. The sheaf
A2m−1(X/S) =

∧2m−1A1(X/S) admits a decomposition

A2m−1(X/S) =
⊕

p+q=2m−1Ap,q(X/S)

Set FmA2m−1(X/S) = ⊕p≥mAp,2m−1−p(X/S), and let ω = (ωs)s∈S be a C∞

section of FmA2m−1(X/S) such that ωs is closed for all s ∈ S. There exists
Ω ∈ FmA2m−1(X) such that Ω|Xs = ωs for all s ∈ S. The form Ω is uniquely
determined if we impose the condition that iχΩ = 0 for every horizontal
vector field χ, i.e., a vector field of the form f ∗v, v ∈ Γ(S, TS).

By Ehresmann’s fibration theorem there is a diffeomorphism X ∼= X0×S
that induces diffeomorphisms ϕs : X0 → Xs for all s ∈ S. Choose γ0 ∈
C2m−2(X0) such that ∂γ0 = Z0 and define γs = (ϕs)∗γ0. Set h(s) = 〈ν̃(s), ωs〉.
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Let ξ be a lifting of the vector field ∂
∂s

, and let ξ̄ be a lifting of ∂
∂s̄

. To show
that h is holomorphic we compute

∂

∂s̄
|s=0h(s) =

∂

∂s̄
|s=0

∫

ϕs∗γ0

ωs =
∂

∂s̄
|s=0

∫

γ0

ϕ∗sωs =

∫

γ0

∂

∂s̄
|s=0ϕ

∗
sωs

=

∫

γ0

Lξ̄ω|X0 .

Using the Cartan formula we find that Lξ̄ω = iξ̄dΩ (remember that iξ̄Ω = 0).
Since contraction with ξ̄ cannot annihilate any dz′s we find that Lξ̄ω|X0 ∈
FmA2m−1(X0). If ω is a holomorphic section of Fm then ∇ξ̄ω = 0, hence Lξ̄ω
is exact. An improtant consequence of Hodge theory is that the differential
d : Ak(X) → Ak+1(X) is strictly compatible with F •. This means that we
can find η ∈ FmA2m−2(X0) such that Lξ̄ω = dη. Using the Stokes formula
we find that

∂

∂s̄
|s=0h(s) =

∫

Z0

η = 0

since the complex dimension of Z0 is m − 1. This proves that ν is a holo-
morphic section of Jm.

To check the quasi–horizontality property, we use the Leibniz rule

∂

∂s
|s=0h(s) = 〈∇ξν̃(0), ω0〉+ 〈ν̃(0),∇ξω(0)〉.

If we can show that

(∗) 〈∇ξν̃(0), ω0〉 = 0

for every section ω ∈ Γ(S,Fm+1) it follows that

∇ξν̃(0) ∈ Fm+1H2m−1(X0)
⊥ = Fm−1H2m−1(X0)

which means that ∇ν(0) = 0. To verify (∗) we compute

∂

∂s
|s=0h(s) =

∫

γ0

Lξω|X0 .

As the closed form Lξω|X0 = iξdΩ|X0 ∈ FmA2m−1(X0) represents ∇ξω we
have

∇ξω = iξdΩ|X0 + dη
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where η can be chosen in FmA2m−1(X0), again by strict compatibility of d
with the Hodge filtration. The Stokes formula then shows that

∫

γ0

dη = 0,

hence
∂

∂s
|s=0h(s) =

∫

γ0

iξdΩ|X0 = 〈ν̃(0),∇ξω(0)〉

and this is equality is equivalent to (∗). ¤

Let Y be a smooth projective variety of even dimension 2m and let
{Xt}t∈T be a family of smooth hypersurface sections of Y . Let XT be the
total space of the family {Xt} with inclusion r : XT → Y × T . Suppose
there exists a codimension m cycle Z on Y such that Z ∩Xt is homologically
equivalent to zero for all t ∈ T . The normal function associated to the rela-
tive cycle r∗(Z × T ) ∈ Zm

hom(XT /T ) is denoted by νZ . By construction νZ(t)
is the image of Zt under the Abel–Jacobi map on Xt.

Using Deligne cohomology (see Appendix A) it is possible to associate a
normal function to Hodge classes on Y . Define

Hdgm(Y )0 = ker(i∗ : Hdgm(Y ) → Hdgm(X))

and consider the commutative diagram

0 → Jm(Y ) → H2m
D (Y,Z(m)) → Hdgm(Y ) → 0yi∗

yi∗
yi∗

0 → Jm(X) → H2m
D (X,Z(m)) → Hdgm(X) → 0.

Given ξ ∈ Hdgm(Y )0, choose a lifting ξ̃ ∈ H2m
D (Y,Z(m)). As i∗ξ̃ maps to

zero in Hdgm(X), it belongs to Jm(X). To get a well–defined map we have
to pass to the quotient

Jm
var(X) = Jm(X)/i∗Jm(Y ).

Define ν(s) = i∗s ξ̃. One can show that ν ∈ H0(S,Jm
var) is a quasi–horizontal

normal function (cf. [12, Lecture 6]).
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Examples 1.4 Some other examples of normal functions:

(i) Let C be a non–hyperelliptic curve of genus 4. It is known that the
canonical image ϕK(C) ⊂ P3 is the complete intersection of a quadric
Q and a cubic F . Let `1, `2 be two lines from the different rulings of
the quadric and set D = `1∩F − `2∩F ∈ Z1

hom(C). If CS = {Cs}s∈S is
a family of non–hyperelliptic genus 4 curves, we obtain a relative cycle
DS = ∪s∈SDs ∈ Z1

hom(CS/S) and a normal function νD.

(ii) Let C be a smooth curve of genus g ≥ 3. The choice of a base point
x ∈ C defines an embedding ix : C → J(C) of C into the g–dimensional
abelian variety J(C). There is an involution i on J(C) given by multi-
plication by−1. Define C+

x = ix(C), C−
x = i∗(C+

x ) and ZC,x = C+
x −C−

x .
As i∗ acts as the identity on H2g−2(J(C),Z) =

∧2g−2H1(J(C),Z), we
have [ZC,x] ∈ CHg−1

hom(J(C)). We obtain a normal function ν̃ over an
open subset of the moduli space Mg,1 of pointed genus g curves asso-
ciated to the relative cycle Z = ∪(C,x)ZC,x. Let PH3(J(C),Z) be the
cokernel of the map

H1(J(C),Z) → H3(J(C),Z)

given by Pontryagin product with [Cx] ∈ H2(J(C),Z). One can ver-
ify that the projection of the Abel–Jacobi image of C+

x − C−
x to the

primitive intermediate Jacobian

Jg−1
pr (J(C)) = F 2H3

pr(J(C),C)∨/PH3(J(C),Z)

does not depend on the choice of the base point x. Hence ν̃ descends to
a section ν ∈ H0(U,J g−1

pr ) defined over a Zariski open subset U ⊂ Mg.

A local lifting of a normal function ν is a local section of the Hodge bundle
that projects to ν. For normal functions that satisfy the quasi–horizontality
property we can define a new invariant that measures the obstruction for the
existence of flat local liftings. To define this invariant, consider the de Rham
complex for the Hodge bundle H = H2m−1

Ω•(H) = (H ∇→ Ω1
S ⊗H ∇→ Ω2

S ⊗H → . . .)

and its subcomplex

Ω•(Fm) = (Fm ∇→ Ω1
S ⊗Fm−1 ∇→ Ω2

S ⊗Fm−2 → . . .).
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Let Ω̃•(Fm) = Ω•(Fm) ⊕ HZ be the complex obtained by adding the local
system HZ in degree zero. The quotient of the de Rham complex by this
modified subcomplex is the complex

Ω•(H/Fm) = (Jm ∇→ Ω1
S ⊗H/Fm−1 → . . .).

The connecting homomorphism

Jm
h = H0(Ω•(H/Fm)) → H1(Ω̃•(Fm)) = H1(Ω•(Fm))

induces a map
δ : H0(S,Jm

h ) → H0(S,H1(Ω•(Fm))).

We call δν the infinitesimal invariant of ν. It is obtained as follows: choose
an open covering U = {Uα} of S and apply ∇ to a local lifting ν̃α of να;
by quasi–horizontality, ∇ν̃α comes from a local section of Ω1

S ⊗Fm−1, which
is annihilated by ∇ and is well defined modulo sections in the image of
∇ : Fm → Ω1

S ⊗ Fm−1. The local sections δνα = [∇ν̃α] patch together to
give a global section δν ∈ Γ(S,H1(Ω•(Fm))).

Lemma 1.5
δν = 0 ⇐⇒ ν has flat local liftings.

Proof: If δν = 0 then there exists locally a section f of Fm such that
∇ν̃ = ∇f , hence ν̃−f = ∇(λ) where λ is locally constant and ν̂ = ν̃−f is a
flat local lifting of ν. The other direction of the equivalence is clear. ¤

The complex Ω•(Fm) is filtered by subcomplexes F pΩ•(Fm) = Ω•(Fp)
(p ≥ m) with graded pieces

Grp
F Ω•(Fm) = (Hp,m−p−1 ∇→ Hp−1,m−p → . . .).

Note that the differential ∇ in these complexes is OS–linear. There is a
natural map

H0(S,H1(Ω•(Fm))) → H0(S,H1(Grm
F Ω•(Fm))).

The image δ1ν of δν under this map is the infinitesimal invariant of normal
functions defined by Griffiths.
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Remark 1.6 (i) If {Z(t)}t∈T is a family of codimension m cycles on X,
we obtain a relative cycle on the trivial family X × T . In this case,
the sheaf Jm is the constant sheaf Jm(X) and the associated normal
function is a map ν : T → Jm(X), defined after the choice of a base
point t0 by ν(t) = ψ(Z(t) − Z(t0)). The infinitesimal invariant δ1ν is
an element of

Ω1
T ⊗Hm−1,m(X) ∼= Hom(T, Hm−1,m(X)).

It coincides with the differential ν∗ of ν, which is called the infinitesimal
Abel–Jacobi map.

(ii) The infinitesimal invariant δ1ν often carries geometric information. For
genus 4 curves, Griffiths [15] showed that it determines the cubic con-
taining the canonical image of the curve. For genus 3 curves, Collino
and Pirola [7] showed that it determines the canonical equation of the
curve.

Remark 1.7 Griffiths defined the fixed part of Jm as the sheaf

Jm
fix = HC/Fm ∩HC + HZ.

The reason for this terminology is that if {Xs} is a family of hypersurface
sections of Y , the fixed part can be identified with the constant sheaf Jm(Y )
using a monodromy argument. (We shall see this in the third lecture for
Y = P2m.) We have an exact sequence

0 → Jm
fix → Jm

h → H1(Ω•(Fm)) → 0,

hence
δν = 0 ⇐⇒ ν ∈ H0(S,Jm

fix).

To conclude this lecture, we mention without proof two important theo-
rems on normal functions. Suppose that S is a smooth curve and f : X → S
admits a compactification f̄ : X̄ → S̄ such that the fibers f̄−1(s) over the
points s ∈ S̄\S are divisors with simple normal crossings. By work of Schmid
and Steenbrink it is possible to extend the Hodge bundle and its subbundles
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to vector bundles H̄ and F̄m on S̄. Let j : S → S̄ be the inclusion map. The
Zucker extension J̄m of Jm is the sheaf

J̄m = H̄/F̄m + j∗HZ.

Strictly speaking, normal functions should be defined as global sections of
J̄m (i.e., sections of Jm that extend over the singular fibers). There exists
a map

∂ : H0(S̄, J̄m) → H1(S̄, j∗HQ).

Theorem 1.8 (Zucker) The group H1(S̄, j∗HQ) carries a Hodge structure
of weight 2m and the image of ∂ coincides with the set of Hodge classes
Hdgm H1(S̄, j∗HQ).

There is also a criterion for extendability of normal functions. For every
s ∈ S̄ \ S, let ∆∗(s) be a punctured disc centered at s and let δs(ν) ∈
H1(∆∗(s), HZ) be the cohomological invariant of ν|∆∗(s).

Theorem 1.9 (El Zein–Zucker) Let ν be a normal function. If δs(ν) = 0
for all s ∈ S̄ \ S, then ν extends to a section ν̄ ∈ H0(S̄, J̄m).

Bibliographical hints. A good introduction to normal functions is Zucker’s
paper [32]; see also [14]. The proof of Proposition 1.3 is taken from [26].
Zucker’s theorem on normal functions can be found in [30] and [31]. For a
discussion of extendability of normal functions, see [8]. The invariant δ1ν
was discovered by Griffiths [15]. The definition of δν is due to Green [11].

2 Griffiths’s theorem

Let X be a smooth projective variety. The group CHp
hom(X) of codimension

p cycles homologically equivalent to zero contains as a subgroup the group
CHp

alg(X) of cycles algebraically equivalent to zero. For divisors (p = 1) and
zero–cycles (p = dim X) both groups coincide but in general they may be
different. The quotient group

Griffp(X) = CHp
hom(X)/ CHp

alg(X)
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is called the Griffiths group of codimension p cycles.

In 1969 Griffiths showed that there exist quintic threefolds X ⊂ P4 such
that the difference of two lines on X is not algebraically equivalent to zero.
This follows from the theorem below. Recall that a property (P) is said to
hold for a very general point of a topological space T if the subset of elements
that do not satsify (P) is a countable union of proper closed subsets of T .

Theorem 2.1 (Griffiths) Let Y be a smooth projective variety of even
dimension 2m and let {Xt}t∈P1 be a Lefschetz pencil of hyperplane sections
of Y . Suppose that H2m−1(Y ) = 0 and that

H2m−1(Xt,C) 6= Hm,m−1(Xt)⊕Hm−1,m(Xt) (1)

If Z ∈ Zm(Y ) and Z ∩Xt is algebraically equivalent to zero for very general
t ∈ P1, then Z is homologically equivalent to zero.

Remark 2.2 The assumption H2m−1(Y ) = 0 is only included to simplify
the proof; it can be omitted. In a later lecture we shall explain Nori’s gener-
alisation of Theorem 2.1.

Before we start with the proof of Theorem 2.1 we introduce some notation:
let B = X0 ∩X∞ be the base locus of the pencil, and let Ỹ be the blow–up
of Y along B. Let U be the complement of the discriminant locus ∆ ⊂ P1.
We have a diagram

XU
r−→ Ỹ π−→ Yyf

yf̄

U j−→ P1.

To prove Theorem 2.1 we need several lemmas. Let

Jm
alg(X) = im(ψm

X : CHm
alg(X) → Jm(X))

be the algebraic part of the intermediate Jacobian of X = Xt.

Lemma 2.3 With the hypotheses of Theorem 2.1 we have Jm
alg(Xt) = 0 if

t ∈ U is very general.
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Proof: Let X = Xt be a general hyperplane section of Y . Recall that a
cycle z ∈ Zm(X) is algebraically equivalent to zero if there exist a variety
S, a relative cycle Z ∈ Zm(X × S/S) and two points s0, s1 in S such that
z = Z(s0) − Z(s1). We may assume that S is a smooth irreducible curve.
Define a map

g : S → Jm(X)

by g(s) = ψX(Z(s0)−Z(s)). As ψX(z) = g(s1) it suffices to study the image
of g. As g is holomorphic, it factorises over a map

h : J(S) → Jm(X)

by the universal property of the Jacobian. By Poincaré duality, the induced
map on homology groups

h∗ : H1(J(S),Z) = H1(S,Z) → H1(J
m(X),Z) = H2m−1(X,Z)

gives a map
h∗ : H1(S) → H2m−1(X).

This map is a morphism of Hodge structures of type (m− 1,m− 1) induced
by the corrspondence [Z] ∈ CHm(X×S). As it induces the map h by passage
to the quotient, we find that Jm

alg(X) is the intermediate Jacobian associated
to a sub–Hodge structure

Halg ⊂ Hm−1,m(X)⊕Hm,m−1(X) ∩H2m−1(X,Q).

Let
ρ : π1(U) → Aut H2m−1(X,Q)

be the monodromy representation, and let Γ = im ρ be the mondromy group.
By Picard–Lefschetz theory we know that H2m−1(X,Q) is an irreducible Γ–
module. If t ∈ U is very general, it is possible to ’spread out’ every cycle on
Xt to a relative cycle over U (this will be explained in more detail in the next
lecture), hence Halg ⊂ H2m−1(X,Q) is a Γ–submodule. If Halg 6= 0 we would
get Halg = H2m−1(X,Q), which is impossible by condition (1) of Theorem
2.1. ¤

The Leray spectral sequence for the map f : XU → U defines a filtration
L• on H2m(XU). We have

L1H2m(XU ,Q) = ker(H2m(XU ,Q) → H0(U,R2mf∗Q)).
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Note that the primitive cohomology

H2m
pr (Y,Q) = ker(∪c1(OY (1)) : H2m(Y,Q) → H2m+2(Y,Q))

coincides with the kernel of the restriction map i∗ : H2m(Y,Q) → H2m(Xt,Q)
if Xt is smooth. Hence, if α ∈ H2m

pr (Y,Q) then π∗α ∈ L1H2m(XU ,Q). As
f : XU → U is a smooth morphism, the sheaf R2m−1f∗Q is locally constant;
we denote it by H2m−1

Q . Since U = P1 \ ∆ is an affine curve, we have
H2(U,R2m−2f∗Z) = 0. Hence

L1H2m(XU) = Gr1
L H2m(XU) ∼= H1(U,H2m−1

Q )

Recall that we have maps π : Ỹ → Y and r : Ỹ → XU . Define the Griffiths
homomorphism

Griff : H2m
pr (Y,Q) → H1(U,H2m−1

Q )

by Griff(α) = (π◦r)∗α.

Lemma 2.4 If Z ∈ Zm(Y ) and [Z] ∈ H2m
pr (Y,Q) then Griff[Z] coincides

with the cohomological invariant ∂(νZ) of the normal function νZ associated
to Z.

Proof: Set ZU = r∗π∗Z ∈ Zm
hom(XU/U) and choose a covering of U by

contractible open subsets Ui, i ∈ I. We can choose a family of cochains γi(t)
such that δγi(t) = ZU(t) for all t ∈ Ui. The 1–cocycle {γij(t)} defined by
γij(t) = γi(t) − γj(t) represents the cycle class cl(ZU) ∈ L1H2m(XU ,Q) ∼=
H1(U,H2m−1

Q ). We can perform a similar construction in homology: choose
chains γi(t) such that ∂γi(t) = Zi(t) and define γij(t) = γi(t)− γj(t). Let ω
be a section of (Fm)∨. We obtain a local lifting ν̃i of νZ by setting

〈ν̃i(t), ω(t)〉 =

∫

γi(t)

ω(t)

The corresponding 1–cocycle {ν̃ij} ∈ Č1(U , (Fm)∨) is given by integration
along γij(t), hence it comes from {γij} ∈ Č1(U,HZ

2m−1). Using Poincaré

duality to identify the local systems HQ
2m−1 and H2m−1

Q we find that ∂(νZ) is

represented by the 1–cocycle {γij} ∈ Č1(U,H2m−1
Q ). ¤
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Lemma 2.5 The Griffiths homomorphism is injective if H2m−1
Q 6= 0.

Proof: As U is an affine curve, the Leray spectral sequence induces an
isomorphism

H2m(XU ,Q) ∼= H0(U,R2mf∗Q)⊕H1(U,H2m−1
Q ).

As [Z] maps to zero in the first summand, we have

Griff[Z] = 0 ⇐⇒ π∗[Z] ∈ ker(r∗ : H2m(Ỹ ) → H2m(XU)).

Set Σ = f̄−1(∆) ⊂ Ỹ . The exact sequence

H2m
Σ (Ỹ ) τ∗−→ H2m(Ỹ ) r∗−→ H2m(XU)

shows that Griff[Z] = 0 if and only if π∗[Z] ∈ im τ∗. By Poincaré–Lefschetz
duality we have

H2m
Σ (Ỹ ,Q) ∼= H2m(Σ,Q) ∼= ⊕s∈∆H2m(Xs,Q).

Let X0 be a smooth fiber. By Picard–Lefschetz theory we have an exact
sequence

0 → H2m(X0) → H2m(Xs) → Z ∂→ H2m−1(X0) → H2m−1(Xs) → 0

and ∂(1) = δs is the vanishing cycle associated to the singular fiber Xs. As
H2m−1(X0) is generated by vanishing cycles, the hypothesis of the Lemma
shows that there exists s0 ∈ ∆ such that δs0 6= 0, hence H2m(Xs0)

∼=
H2m(X0). Since H2m(X0) ∼= H2m−2(X0) ∼= H2m−2(Y ) by Poincaré dual-
ity and the Lefschetz hyperplane theorem, H2m(Xs0) can be identfied with
H2m−2(Y ). Under this identification π∗◦τ∗ : H2m−2(Y ) → H2m(Y ) is iden-
tified with the Lefschetz operator LY , which is given by cup product with
c1(OY (1)). As π∗π∗[Z] = [Z] we find

π∗[Z] ∈ im τ∗ ⇐⇒ [Z] ∈ im LY

⇐⇒ 0 = [Z] ∈ H2m
pr (Y ).

¤
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We can now finish the proof of Griffiths’s theorem.
Proof: (Theorem 2.1) Suppose that Z ∈ Zm(Y ) is a cycle such that Zt =
Z ∩Xt is algebraically equivalent to zero for very general t. Then ψ(Zt) = 0
for very general t by Lemma 2.3, hence the normal function νZ is zero. This
implies that ∂(νZ) = 0, hence Griff[Z] = 0 by Lemma 2.4 and [Z] = 0 by
Lemma 2.5. ¤

We mention two applications of Theorem 2.1. Note that the theorem also
applies to hypersurface sections (use a Veronese embedding to reduce to the
case of hyperplane sections).

Corollary 2.6 Let Y ⊂ P2m+1 (m ≥ 2) be a smooth quadric and let X
be the intersection of Y with a hypersurface of degree d ≥ 4. If X is very
general then Griffm(X)⊗Q 6= 0.

Proof: The quadric Y contains two families of m–planes. Let L1, L2 be two
m–planes from the two different families. If d ≥ 4 the Hodge structure on
H2m−1(X) is not of type {(m−1, m), (m,m−1)} and we can apply Theorem
2.1 to the cycle Z = L1 − L2. (If m ≥ 3 it suffices to take d ≥ 3.) ¤

Corollary 2.7 Let Y be a smooth quintic fourfold such that im(cl2Y ) ∩
H4

pr(Y,Q) 6= 0 and let {Xt}t∈P1 be a Lefschetz pencil of hyperplane sections

of Y . If t is very general then Griff2(Xt)⊗Q 6= 0.

The Fermat quintic Y ⊂ P5 is an example of a quintic fourfold that
satisfies the condition of the Corollary. It contains two planes P1, P2 such
that 0 6= [P1 − P2] ∈ H4

pr(Y,Q). By Corollary 2.7, the difference of the two
lines L1,t = P1 ∩Ht and L2,t = P2 ∩Ht on the quintic threefold Xt = Y ∩Ht

is a nontorsion element of Griff2(Xt) if t is very general. Note that the set of
quintic fourfolds Y that satisfy the condition of Corollary 2.7 is a countable
union of proper closed subsets of PH0(P5,OP(5)) by the Noether–Lefschetz
theorem.

Bibliographical hints. Griffiths’s theorem appears in [13, Thm. 14.1]. A
detailed study of the Griffiths homomorphism can be found in [18]. For the
proof of Griffiths’s theorem we have followed the arguments of Voisin [26].
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3 The theorem of Green–Voisin

Let S ⊂ P3 be a surface of degree d ≥ 4. If S is very general then Pic(S) ∼= Z
by the Noether–Lefschetz theorem. Using the Lefschetz hyperplane theorem
and the exponential sequence one easily proves that Pic(X) ∼= Z for every
smooth hypersurface X ⊂ Pn+1 of dimension n ≥ 3. Griffiths and Harris
asked whether CH2(X) ∼= Z if X is a very general threefold of degree d ≥ 6
in P4. If this question has an affirmative answer, it would follow that the
image of the Abel–Jacobi map ψX is zero if d ≥ 6. Modulo torsion, this has
been proved by Green and Voisin.

Theorem 3.1 (Green–Voisin) Let X ⊂ P2m be a smooth hypersurface
of degree d and dimension 2m − 1 (m ≥ 2). If X is very general and if
d ≥ 2 + 4

m−1
then the image of

ψm
X : CHm

hom(X) → Jm(X)

is contained in the torsion points of Jm(X).

The proof of this result is obtained by a careful study of the infinitesimal
invariant of a normal function. Again we need several lemmas, the first of
which is a technique known as ’spreading out’ an algebraic cycle.

Lemma 3.2 Let f : X → S be a smooth projective morphism. If Z0 ∈
Zm

hom(Xs0) and s0 ∈ S is very general, then there exist a finite covering
g : T → S, a point t0 ∈ g−1(s0) and a relative cycle ZT ∈ Zm

hom(XT /T ) such
that ZT (t0) = Z0.

Proof: There exists a relative Chow scheme Chowm(X/S) that parametrises
algebraic cycles of relative codimension m over S and a dominant map

p : Chowm(X/S) → S.

Let Σ ⊂ S be the image of the irreducible components of Chowm(X/S) that
do not dominate S. The subset Σ ⊂ S is a countable union of Zariski closed
subsets of S. If s0 ∈ S \ Σ then there exists a finite morphism g : T → S
such that Chowm(X ×S T/T ) admits a rational section that passes through
Z0; let ZT be its image. By construction the cycles Z(t) are algebraically
equivalent, hence homologically equivalent. ¤
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Remark 3.3 By shrinking S and T , we may assume that Chowm(X×ST/T )
admits a section and that g : T → S is a finite étale morphism.

Set V = H0(P2m,OP(d)) and let U ⊂ P(V ) be the complement of the
discriminant locus. Consider the universal family of hypersurfaces

XU = {(x, F ) ∈ P2m × U |F (x) = 0}.

Let 0 ∈ U be a base point and let Z ∈ Zm
hom(X0). If the base point is very

general, we can apply Lemma 3.2 to the morphism f : XU → U to ’spread
out’ Z0 to a relative cycle ZT ∈ Zm

hom(XT /T ) over a new base T . After
deleting the branch locus of the finite morphism g : T → U we may assume
that g is étale. Let ν ∈ H0(T,Jm) be the normal function associated to ZT .

Write S = C[X0, . . . , X2m]. Let f ∈ Sd be a homogeneous polynomial of
degree d, and let Jf = ( ∂f

X0
, . . . , ∂f

X2m
) be the Jacobian ideal of f . The quotient

ring Rf = S/Jf is a graded ring, called the Jacobi ring of f . Griffiths proved
that the cohomology of X = V (f) in the middle dimension can be described
by the Jacobi ring:

Hp,q(X) ∼= R(q+1)d−2m−1 (p + q = 2m− 1).

The following result is known as the Symmetrizer Lemma. We shall not
prove it here, as we shall prove a more general result in the lectures on Nori’s
theorem.

Lemma 3.4 (Donagi–Green) The Koszul complex

∧2Sd ⊗ Sa−d → Sd ⊗ Sa → Sa+d → 0

is exact if a− d > 0.

We shall use the symmetrizer lemma to study the cohomology sheaves of
the complex

Ω•(Fm) = (Fm → Ω1
T ⊗Fm−1 → . . .).

Lemma 3.5 If d ≥ 2 + 4
m−1

then H0(Ω•(Fm)) = H1(Ω•(Fm)) = 0.
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Proof: By a spectral sequence argument, it suffices to verify the assertion
for the graded pieces

Grp
F Ω•(Fm) = (Hp,2m−1−p → Ω1

T ⊗Hp−1,2m−p → . . .).

To this end, it suffices to show that the complex

0 → Hp,2m−p−1(Xt) → Ω1
T,t ⊗Hp−1,2m−p(Xt) → Ω2

T,t ⊗Hp−2,2m−p+1(Xt)

is exact as far as written for all p ≥ m and for all t ∈ T . The dual complex
is

∧2Tt ⊗H2m−p+1,p−2(Xt) → Tt ⊗H2m−p,p−1(Xt) → H2m−p−1,p(Xt) → 0.

As g : T → U is étale, we can identify the tangent space Tt with the tangent
space to U at g(t), which is isomorphic to Sd. Using Griffiths’s description
of the cohomology groups of Xt we can identify the dual complex with the
complex

∧2Sd ⊗R(p−1)d−2m−1 → Sd ⊗Rpd−2m−1 → R(p+1)d−2m−1.

A diagram chase shows that this complex is exact at the middle term if

(i) ∧2Sd ⊗ S(p−1)d−2m−1 → Sd ⊗ Spd−2m−1 → S(p+1)d−2m−1

is exact at the middle term;

(ii) the map Sd ⊗ Jpd−2m−1 → J(p+1)d−2m−1 is surjective.

By the Symmetrizer Lemma, (i) holds for all p ≥ m if (m − 1)d ≥ 2m + 2,
which translates into the condition of the Lemma. As the Jacobian ideal Jf

is generated in degree d − 1, (ii) holds if (m − 1)d − 2m − 1 ≥ d − 1; this
condition is weaker than the first condition. The multiplication map

Sd ⊗Rpd−2m−1 → R(p+1)d−2m−1

is surjective for all p ≥ m if md ≥ 2m + 1; again, this condition is weaker
than the first condition. ¤
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The proof of Theorem 3.1 is finished by the following monodromy argu-
ment.

Lemma 3.6 If H0(Ω•(Fm)) = H1(Ω•(Fm)) = 0 then ν is a torsion section
of Jm.

Proof: As δν is a global section ofH1(Ω•(Fm)), we have δν = 0. Hence ν has
flat local liftings. The vanishing of H0(Ω•(Fm)) implies that these flat local
liftings are unique up to sections of the local system HZ = R2m−1f∗Z/tors.
Let

ρ : π1(T, t0) → Aut H2m−1(X0,C)

be the monodromy representation. By the uniqueness property of flat local
liftings obtained above, it follows that

(∗) ρ(γ)(ν̃(0))− ν̃(0) ∈ H2m−1(X0,Z)

for all γ ∈ π1(T, t0). To show that ν(0) ∈ Jm(X0) is torsion, we have to
prove that ν̃(0) ∈ H2m−1(X0,Q). We shall verify that this follows from
(∗). Let {γi} be a set of generators of π1(U, 0) coming from a Lefschetz
pencil L ⊂ U , and let {δi} be the corresponding set of vanishing cocycles in
H2m−1(X0,Z). Let N be the index of the subgroup g∗π1(T, t0) ⊂ π1(U, 0).
We have γN

i = g∗γ̃i some γ̃i ∈ π1(T, t0). By the Picard–Lefschetz formula we
have

ρ(γ̃i)(ν̃(0))− ν̃(0) = εN〈ν̃(0), δi〉δi

where ε ∈ {−1, 1}. Using (∗) we obtain 〈ν̃(0), δi〉 ∈ Q for all i. As the van-
ishing cocycles generate H2n−1(X,Q), it follows that ν̃(0) ∈ H2m−1(X0,Q).

¤

Remark 3.7 (i) Apart from the known exceptions X = V (d) ⊂ P4, d ≤
5, the only exceptions to the Green–Voisin theorem are cubic fivefolds
and cubic sevenfolds. In both cases the image of the Abel–Jacobi map
is nonzero modulo torsion; see [4] and [1].

(ii) Griffiths and Harris have shown that there are no nonzero normal func-
tions over the complement U ⊂ PH0(P4,OP(d)) of the discriminant lo-
cus if d ≥ 3 (this is also true for d = 2, since the intermediate Jacobian
of a quadric is zero). We have seen that there can be nonzero normal
functions if d ≤ 5, but they are multivalued sections of Jm that only
become well–defined after passing to a finite covering T → U .
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Bibliographical hints. Theorem 3.1 was proved independently by M.
Green and C. Voisin. Green’s proof has appeared in [11]; see also [26]. The
conjectures of Griffiths and Harris have appeared in [17]. The monodromy
argument in Lemma 3.6 is taken from [27, Lecture 4].

4 Nori’s connectivity theorem

Nori’s connectivity theorem is a far–reaching generalisation of the theorem of
Green–Voisin, based on the observation that their result can be interpreted in
terms of the cohomology of the universal family of hypersurfaces in projective
space.

Notation. Let (Y,OY (1)) be a smooth polarised variety over C and let
X ⊂ Y be a smooth complete intersection of multidegree (d0, . . . , dr) and of
dimension n. Set

E = OY (d0)⊕ . . .⊕OY (dr)

and define S = PH0(Y,E). Let U ⊂ S be the complement of the discriminant
locus. Over S we have the universal family

XS = {(y, s) ∈ Y × S|s(y) = 0} ⊂ YS = Y × S.

Given a morphism T → S we obtain induced familes

XT = X ×S T, YT = Y × T

over T by base change. Let r : XT → YT be the inclusion map, and let
p : YT → T , f = p◦r : XT → T be the projection maps.

Nori’s main result is the following connectivity theorem for the pair
(YT , XT ).

Theorem 4.1 (Nori) If min(d0, . . . , dr) À 0 then for every smooth mor-
phism T → S we have Hn+k(YT , XT ,Q) = 0 for all k ≤ n.

Remark 4.2 (i) For every base change T → S (not necessarily smooth)
we have Hk(YT , XT ,Z) = 0 for all k ≤ n. To see this, note that the Lef-
schetz hyperplane theorem shows that the restriction map i∗Rqp∗Z→
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Rqf∗Z is an isomorphism if q < n and is injective if q = n. As an ex-
ercise, the reader may verify that this implies that the restriction map
Hk(YT ,Z) → Hk(XT ,Z) is an isomorphism if k ≤ n−1 and is injective
if k = n by comparing the Leray spectral sequence

Ep,q
2 = Hp(T, Rqf∗Z) ⇒ Hp+q(XT ,Z)

to the Künneth spectral sequence

Ẽp,q
2 = Hp(T,Z)⊗Hq(Y,Z) ⇒ Hp+q(YT ,Z).

If k ≥ 1 one can construct examples where Hn+k(YT , XT ,Z) is nonzero
even if min(d0, . . . , dr) À 0.

(ii) Set E = p∗Y E ⊗ p∗SOS(1). The variety XS ⊂ YS is the zero locus
of the tautological section τ ∈ H0(YS, E). As E is an ample vector
bundle on the projective variety YS, it follows that Hk(YS, XS,Z) = 0
for all p ≤ dim XS [19]. This connectivity result is stronger than the
statement in Nori’s theorem for T = S, but it is not invariant under
base change.

(iii) The local system Rnf∗Q splits as a direct sum of a fixed part i∗Rnp∗Q
and a variable part V. Nori’s connectivity theorem is equivalent to a
statement about cohomology with values in the local system V. This
follows from Deligne’s theorem on the degeneration at E2 of the Leray
spectral sequence for f with Q–coefficients. Define

Hk(Y )0 = ker(i∗ : Hk(Y ) → Hk(X)).

Note that this group is zero if k ≤ n. By Deligne’s theorem, we have

Hn+k(XT ,Q) ∼= ⊕
p+q=n+kH

p(T,Rqf∗Q).

Comparing the decomposition of Hn+k(XT ) with the Künneth decom-
position of Hn+k(YT ) we find that Hn+k(YT , XT ) = 0 for all k ≤ c if
and only if the map

⊕k−1
i=0 H i(T,Q)⊗Hn+k−i(Y,Q)0 → Hk(T,V)

is an isomorphism for all k < c and is injective for k = c.
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(iv) Nori’s theorem does not necessarily hold if we omit the smoothness
assumption on the base change. For instance, let L ⊂ S be a Lefschetz
pencil of hypersurface sections on a smooth projective variety Y such
that dim Y = 2m and H2m

pr (Y,Q) 6= 0. Let T = U ∩ L be the smooth
part of the Lefschetz pencil. Using (iii), the vanishing of H2m(YT , XT )
is equivalent to the vanishing of H0(T,V) and the injectivity of the
map

ψ1 : H2m
pr (Y,Q) → H1(T,V).

By Picard–Lefschetz theory we have H0(T,V) = 0. As the map ψ1

coincides with the Griffiths homomorphism discussed in Lecture 2, it
follows from Griffiths’s theorem that H2m(YT , XT ) = 0 if d À 0. Again
using (iii), the vanishing of H2m+1(YT , XT ,Q) would imply that there
is an injective map

ψ2 : H2m+1(Y,Q)0 ⊕H1(T,Q)⊗H2m
pr (Y,Q) → H2(T,V).

As T is affine, we have H2(T,V) = 0. As H1(T,Q) is nonzero if d À 0,
the left hand side is nonzero for d À 0; hence ψ2 cannot be injective and
H2m+1(YT , XT ,Q) 6= 0 for all d À 0. A similar argument shows that
Hn+c(YT , XT ) 6= 0 if L ⊂ S is a general linear subspace of dimension
e < c. By analogy with Griffiths’s theorem, Nori [24, Conj. 7.4.1]
conjectures that Hn+k(YT , XT ) = 0 for all k ≤ c if L is a general linear
subspace of dimension c in S.

The following result shows that Nori’s theorem implies the theorem of
Green–Voisin.

Theorem 4.3 Let X be a very general smooth complete intersection in Y
of multidegree (d0, . . . , dr) and dimension n, with inclusion map i : X → Y .
If min(d0, . . . , dr) À 0 then

im(clpD,X) ⊂ i∗H2p
D (Y,Q(p))

for all p < n.

Proof: Let ∆ ⊂ S be the discriminant locus. If s0 ∈ S is very general
there exist for every z0 ∈ CHp

hom(Xs0) a subset U ′ ⊂ S \ ∆ containing s0,
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a finite étale covering g : T → U ′, a relative cycle Z ∈ CHp
hom(XT /T ) and

t0 ∈ g−1(s0) such that ZT (t0) = z0. Consider the commutative diagram

H2p
D (YT ,Q(p)) r∗−→ H2p

D (XT ,Q(p))yk∗
yj∗

H2p
D (Y,Q(p)) i∗−→ H2p

D (Xs0 ,Q(p)).

It follows from Theorem 4.1 and the long exact sequence of Deligne coho-
mology (Appendix A) that

Hn+k
D (YT , XT ,Q(p)) = 0

for all k ≤ n. Hence the map r∗ is surjective for all p ≤ n − 1. Choose
ξ ∈ H2p

D (YT ,Q(p)) such that r∗ξ = clD(ZT ) and put η = k∗ξ ∈ H2p
D (Y,Q(p)).

By construction we have i∗η = j∗ clD(ZT ) = clD(z0). ¤

Remark 4.4 (i) By the Lefschetz hyperplane theorem, the statement of
the theorem is only nontrivial if n = 2p or n = 2p − 1. Let us take
Y = PN . If we apply the theorem with n = 2p, we find that the image
of clpX is isomorphic to Z (note that H2p(X,Z) is torsion free), which
is the general form of the Noether–Lefschetz theorem. If we apply the
theorem with n = 2p − 1, we find that the image of the Abel–Jacobi
map ψp

X is contained in the torsion points of Jp(X), which is the Green–
Voisin theorem. Note that we only obtain asymptotic versions of these
theorems. Paranjape [25] has obtained an effective version of Nori’s
theorem. It leads to the bound d ≥ 2p + 2 in both cases. This bound
is optimal if n = 2p and p = 1 and if n = 2p − 1 and p = 2, but not
in general: we obtained the better bound d ≥ 2 + 4

p−1
for the Green–

Voisin theorem in Lecture 3. We shall see later how to obtain effective
degree bounds for Theorem 4.1 that do give the optimal bounds for the
theorems of Noether–Lefschetz and Green–Voisin.

(ii) Theorem 4.3 shows that we cannot expect to obtain a connectivity
result for the pair (YT , XT ) without conditions on the degrees. For
instance we cannot have H5(P4

T , XT ) = 0 if d ≤ 5 since the image of
the Abel–Jacobi map on a very general quintic hypersurface X ⊂ P4 is
not contained in the torsion points of J2(X) by Griffiths’s theorem.
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(iii) Theorem 4.3 does not hold for zero cycles (p = n). Consider for example
a family CT → T of smooth plane curves of degree d (n = 1). If
Theorem 4.3 could be applied to this case, we would find that the image
of the Abel–Jacobi map for a very general plane curve is contained in
the torsion points of the Jacobian. This is clearly false by the Jacobi
inversion theorem.

Bibliographical hints. Nori’s theorem has appeared in [24]; see also [12,
Lecture 8]. Paranjape’s effective version of Nori’s theorem can be found
in [25]. Green and Müller–Stach have obtained a more precise version of
Theorem 4.3; see [16].

5 Sketch of proof of Nori’s theorem

In this section we sketch the proof of an effective version of Nori’s theorem
along the lines of the proof of Green–Voisin. Our condition on the base
change is more restrictive than the one in Nori’s original result: we consider
smooth morphisms T → S such that the induced map XT → T is smooth,
i.e., we demand that the morphism T → S factors through the complement
of the discriminant locus. This suffices for the geometric applications that
we shall discuss in the next lecture.

We start by recalling a little bit of mixed Hodge theory. The cohomol-
ogy groups of a quasi–projective variety do not always carry a pure Hodge
structure (HS). Consider for example the variety U = P1(C) \ {0,∞}. As
U is homotopically equivalent to a circle its first Betti number is 1, hence
H1(U) cannot carry a pure HS. (A similar result holds for the complement
of two points in a smooth compact curve of arbitrary genus.) Deligne has
proved that the cohomology groups of smooth quasi–projective variety X al-
ways carry a mixed Hodge structure (MHS). This means that for every k ≥ 0
there exist a decreasing filtration F • on Hk(X,C) (the Hodge filtration) and
an increasing filtration W• on Hk(X,Q) (the weight filtration) such that F •

induces a pure HS of weight m on the graded pieces

GrW
m Hk(X) = WmHk(X)/Wm−1H

k(X)

of the weight filtration. By construction, the weight filtration on the coho-
mology of a smooth quasi–projective variety satisfies

GrW
m Hk(X) = 0 if m < k.
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A morphism of MHS f : H1 → H2 is a homomorphism of abelian groups that
is compatible with the filtrations F • and W•. Deligne has shown that such
morphisms are strictly compatible with the Hodge and weight filtrations, i.e.

F pH2 ∩ im f = f(F pH1)

WmH2 ∩ im f = f(WmH1).

The proof of Nori’s theorem proceeds in several steps.

Step 1: mixed Hodge theory. As we usually want to apply Nori’s the-
orem to a quasi–projective base T , we have to deal with the cohomology of
the quasi–projective varieties XT and YT . By Deligne’s theorem the groups
Hn+k(YT ) and Hn+k(XT ) carry a MHS. Using a cone construction one can
also put a MHS on the relative cohomology Hn+k(YT , XT ). As the long exact
sequence

Hn+k−1(XT ) → Hn+k(YT , XT ) → Hn+k(XT ) → Hn+k(XT )

is an exact sequence of MHS and morphisms of MHS are strictly compatible
with the weight filtration, we have

GrW
m Hn+k(YT , XT ) = 0 if m < n + k − 1.

The presence of a MHS on Hn+k(YT , XT ) implies that this vector space
vanishes if a large enough subspace of it vanishes.

Lemma 5.1 Suppose there exists a natural number m ≤ [n+k
2

] such that
FmHn+k(YT , XT ) = 0. Then Hn+k(YT , XT ) = 0.

Proof: Suppose that Hn+k(YT , XT ) 6= 0. Then there exists i ≥ n + k − 1
such that GrW

i Hn+k(YT , XT ) 6= 0. We have a Hodge decomposition

GrW
i Hn+k(YT , XT ) = ⊕p+q=iH

p,q

such that Hq,p = H̄p,q (Hodge symmetry). If Hp,q 6= 0 then p ≤ m− 1 by the
hypothesis of the Lemma, hence also q ≤ m − 1 by Hodge symmetry. But
then i = p + q ≤ 2m− 2 ≤ n + k − 2, contradiction. ¤
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It is difficult to apply the previous Lemma to prove the vanishing of
Hn+k(YT , XT ) since the Hodge filtration on Hn+k(YT , XT ) is defined in a
complicated way. One starts by choosing compatible good compactifications
ȲT and X̄T of YT and XT with boundary divisors D̃T = ȲT\YT , DT = X̄T\XT .
Let j : X̄T → ȲT be the inclusion map (its restriction to XT is also denoted
by j) and let C•(α) be the cone of the (surjective) map

α : Ω•̄
YT

(log D̃T ) → j∗Ω•̄
XT

(log DT ).

One can show that Hn+k(C•(α)) ∼= Hn+k(YT , XT ). The Hodge filtration on
Hn+k(YT , XT ) is defined by

F pHn+k(YT , XT ) = im(Hn+k(σ≥pC
•(α)) → Hn+k(C•(α))).

There is another, easier way to put a filtration on Hn+k(YT , XT ). Define

Ω•
YT ,XT

= ker(β : Ω•
YT
→ j∗Ω•

XT
).

It follows from Grothendieck’s algebraic de Rham theorem and the five lemma
that Hn+k(Ω•

YT ,XT
) ∼= Hn+k(YT , XT ). Hence we can define a second filtration

G• on Hn+k(YT , XT ) by

GpHn+k(YT , XT ) = im(Hn+k(σ≥pΩ
•
YT ,XT

) → Hn+k(Ω•
YT ,XT

)).

As β is surjective, the complex Ω•
YT ,XT

is quasi–isomorphic to C•(β). The
restriction from ȲT to YT induces a quasi–isomorphism C•(α) → C•(β).
Hence

F pHn+k(YT , XT ) ⊆ GpHn+k(YT , XT ),

so it suffices to show that GmHn+k(YT , XT ) = 0 for some m ≤ [n+k
2

]. The
advantage of working with G• is that we can work on YT and XT and do not
have to pass to a compactification.

Step 2: semicontinuity. There exists a spectral sequence (induced by the
filtration bête)

Ea,b
1 = Ha(YT , Ωb

YT ,XT
) ⇒ Ha+b(Ω•

YT ,XT
).

Using this spectral sequence we find that GmHn+k(YT , XT ) = 0 if

Ha(YT , Ωb
YT ,XT

) = 0 for all (a, b) such that a + b ≤ n + k, b ≥ m.
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Let p : YT → T be the projection map. By the Leray spectral sequence it
suffices to show that H i(T, Rjp∗Ωb

YT ,XT
) = 0 for all (i, j) such that i + j = a.

This is certainly true if
Rjp∗Ωb

YT ,XT
= 0

for all j ≤ a. Let it : Y → YT be the inclusion map defined by it(y) = (y, t).
As the maps p : YT → T and f : XT → T are flat and the sheaves Ωb

YT
and

Ωb
XT

are locally free, it follows that these sheaves are flat over OT . Hence
Ωb

YT ,XT
is flat over OT . By semicontinuity, Rjp∗Ωb

YT ,XT
= 0 if

Hj(Y, i∗t Ω
b
YT ,XT

) = 0

for all t ∈ T .

Step 3: Leray filtration. Suppose that f : XT → T is smooth. In this
case we have an exact sequence

0 → f ∗Ω1
T → Ω1

XT
→ Ω1

XT /T → 0.

The Leray filtration L• on Ωb
XT

is defined by

LpΩb
XT

= im(f ∗Ωp
T ⊗ Ωb−p

XT
→ Ωb

XT
).

Its graded pieces are

Grp
L Ωb

XT

∼= f ∗Ωp
T ⊗ Ωb−p

XT /T .

The spectral sequence associated to the induced filtration on Ωb
XT
⊗OXt is

Ep,q
1 = Ωp

T,t ⊗Hp+q(Xt, Ω
b−p
Xt

) ⇒ Hp+q(Xt, Ω
b
XT
⊗OXt).

One can show that the d1 map in this spectral sequence is the differential of
the period map; it is given by cup product with the Kodaira–Spencer class.
The Leray filtration on Ω•

YT
splits, as YT is a product. Define a filtration L•

on Ω•
YT ,XT

by

LpΩb
YT ,XT

= ker(LpΩb
YT
→ Lpj∗Ωb

XT
).

Set Ωb
(YT ,XT )/T = ker(Ωb

YT /T → j∗Ωb
XT /T ). We have

Grp
L Ωb

YT ,XT

∼= f ∗Ωp
T ⊗ Ωb−p

(YT ,XT )/T .
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If we restrict L• to the fiber Y × {t} we obtain a spectral sequence

Ep,q
1 (b) = Ωp

T,t ⊗Hp+q(Y, Ωb−p
Y,Xt

) ⇒ Hp+q(Y, i∗t Ω
b
YT ,XT

).

Using the semiconinuity result from Step 2, we find that Hn+k(YT , XT ) = 0
if

Ep,q
∞ (b) = 0 for all (p, q, b) such that p + q + b ≤ n + k, b ≥ m.

Step 4: reduction to hypersurfaces. There exists a trick using projective
bundles to reduce questions about complete intersections to hypersurfaces.
It was used by Terasoma and Konno to define Jacobi rings for complete
intersections in projective space. We can apply a similar trick to the relative
cohomology of the pair (YT , XT ). Set

E = p∗Y E ⊗ p∗TOT (1)

and let PT = P(E∨) be the projective bundle associated to E∨ with projection
map πT : PT → YT . On PT there exists a tautological line bundle ξ such that
H0(PT , ξ) ∼= H0(YT , E). We know that XT ⊂ YT is the zero locus of a section
σ ∈ H0(YT , E). Let σ̃ be the corresponding section of ξ, and let X̃T ⊂ PT be
its zero locus.

Lemma 5.2 For all k ≥ 0 there is an isomorphism

Hk(YT , XT ) ∼= Hk+2r(PT , X̃T ).

Proof: Consider the diagram

π−1
T (XT ) = P(E∨|XT

) ⊂ X̃T ⊂ PT ⊃ PT \ X̃TyπT

yπT

XT ⊂ YT ⊃ YT \XT .

As the line bundle ξ restricts to OP(1) on each fiber of πT , the induced map

πT : PT \ X̃T → YT \XT

is a fiber bundle with fiber Ar. Hence (πT )∗ induces an isomorphism

Hk+2r
c (PT \ X̃T ) ∼= Hk

c (YT \XT ).

By Poincaré–Lefschetz duality we find an isomorphism Hk+2r(PT , X̃T ) ∼=
Hk(YT , XT ). ¤

28



By Lemma 5.2 it suffices to prove Nori’s theorem for a family of hyper-
surface sections XT ⊂ YT defined by sections of a very ample line bundle
L = OY (d).

Step 5: base change. We say that Nori’s condition (Nc) holds if

Rap∗Ωb
YT ,XT

= 0 for all (a, b) such that a + b ≤ n + c, b ≥ m.

If (Nc) holds, then Hn+k(YT , XT ) = 0 for all k ≤ c.

Lemma 5.3 (Nori) Let U and T be smooth quasi–projective varieties and
let g : T → U be a smooth morphism.

(i) If (Nc) holds for U , then (Nc) holds for T ;

(ii) if g is smooth and surjective and (Nc) holds for T , then (Nc) holds for
U .

For the proof of Lemma 5.3, see [24, Lemma 2.2].

Define V = H0(Y, L), S = P(V ). Let ∆ ⊂ S and ∆′ ⊂ V be the
discriminant loci and let U = S \ ∆, U ′ = V \ ∆′ be their complements.
Let i : U ′ → V \ {0} be the inclusion, and let π : V \ {0} → P(V ) be the
projection. The composed map π◦i : U ′ → S is a smooth morhpism with
image U . If (Nc) holds for the base U ′, then (Nc) holds for every base T such
that T → U is a smooth morphism by Lemma 5.3. Hence it suffices to prove
that (Nc) holds for one particular choice of the base T , namely T = U ′. In
this case, the tangent space Tt to T at every point t can be identified with
V . Hence

Ep,q
1 (b) ∼= ∧pV ∨ ⊗Hp+q(Ωb−p

Y,Xt
)

for all t ∈ T . There exists a perfect pairing

Ωp
Y,Xt

⊗ Ωn+1−p
Y (log Xt) → KY

given by wedge product. Using this pairing we can identify KY ⊗ (Ωp
Y,Xt

)∨

with Ωn+1−p
Y (log Xt). By Serre duality the dual of Ep,q

1 (b) is

E−p,n+1−q
1 (b) =

∧pV ⊗Hn+1−p−q(Y, Ωn+1−b+p
Y (log Xt)).
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Step 6: Green’s generalised Jacobi ring. Let P 1(L) be the first jet
bundle of L. It fits into an exact sequence

0 → Ω1
Y ⊗ L → P 1(L) → L → 0. (2)

There exists a map j1 : L → P 1(L) that associates to a section s of L its
1–jet j1(s). If we dualise the exact sequence (2) and tensor it by L we obtain
an exact sequence

0 → OY → ΣY,L → TY → 0 (3)

with extension class 2πic1(L) ∈ H1(Y, Ω1
Y ). The bundle ΣY,L is called the

first prolongation bundle of L (bundle of first order differential operators on
sections of L).

Let F be a coherent sheaf of OY –modules. For every s ∈ H0(Y, L) we
have a map ΣY,L⊗L−1 → F that is given by contraction with j1(s) ∈ P 1(L).
Let

gs : H0(Y, ΣY,L ⊗ L−1) → H0(Y,F)

be the induced map on global sections. Define

JY,s(F) = im gs, RY,s(F) = coker gs.

Let X ∈ |L| be a smooth hypersurface section of Y of dimension n. The
Poincaré residue sequence

0 → Ωn−p+1
Y → Ωn−p+1

Y (log X)
Res→ i∗Ω

n−p
X → 0

induces an exact sequence

0 → Hn−p+1,p
pr (Y ) → Hp(Y, Ωn+1−p

Y (log X)) → Hn−p,p
var (X) → 0.

Recall that a property (P) is said to hold for a sufficiently ample line
bundle L if there exists a line bundle L0 such that (P) holds for L if L⊗L−1

0

is ample.

Proposition 5.4 (Green) If L is sufficiently ample then

Hp(Y, Ωn−p+1
Y (log X)) ∼= RY,s(KY ⊗ Lp+1).
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Proof: Contraction with the 1–jet j1(s) defines a map ΣL → L whose kernel
is isomorphic to TY (− log X). If we dualise and take exterior powers in the
resulting short exact sequence

0 → TY (− log X) → ΣL → L → 0,

we obtain a long exact seqeunce

0 → Ωn+1−p
Y (log X) → ∧n−p+2Σ∨

L ⊗ L → . . .

. . . → ∧n+1Σ∨
L ⊗ Lp → ∧n+2Σ∨

L ⊗ Lp+1 → 0.

Using the identifications
∧n+1Σ∨

L
∼= KY ⊗ΣL and

∧n+2Σ∨
L
∼= KY , we obtain

the isomorphism of the Proposition by chasing through the spectral sequence
of hypercohomology associated to this long exact sequence. ¤

The bigraded ring

RY,s = ⊕p,q≥0RY,s(Y,Kp
Y ⊗ Lq+1)

is called the Jacobi ring associated to s.

Example 5.5 Take Y = Pn+1, L = OP(d). The exact sequence (3) is the
familiar Euler sequence

0 → OP → ⊕n+2OP(1) → TP → 0.

Using this sequence, one checks that RY,s(KY ⊗ Lp+1) ∼= R(p+1)d−n−2. Hence
the ring ⊕pRY,s(KY ⊗ Lp+1) coincides with Griffiths’s Jacobi ring

Step 7: Koszul cohomology. Let F be a coherent sheaf of OY –modules.
The Koszul cohomology group Kp,q(F , L) is the cohomology group at the
middle term of the complex

∧p+1V ⊗H0(F ⊗ Lq−1) → ∧pV ⊗H0(F ⊗ Lq) → ∧p−1V ⊗H0(F ⊗ Lq+1).

These groups were introduced and studied by M. Green.

A standard technique to obtain vanishing theorems for Koszul cohomol-
ogy is due to Green and Lazarsfeld. Let ML be the kernel of the surjective
evaluation map eL : V ⊗OY → L. It fits into an exact sequence

0 → ML → V ⊗C OY → L → 0.
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If we take exteriors powers in this short exact sequence and twist by F⊗Lq−1

we obtain a complex

0 → ∧p+1ML ⊗F ⊗ Lq−1 → ∧p+1V ⊗F ⊗ Lq−1 → ∧pV ⊗F ⊗ Lq →
→ ∧p−1V ⊗F ⊗ Lq+1 → . . . → F ⊗ Lp+q → 0.

The Koszul complex is obtained from this complex by taking global sections,
and one obtains the following result.

Proposition 5.6

Kp,q(F , L) = 0 if H1(Y,
∧p+1ML ⊗F ⊗ Lq−1) = 0.

Step 8: the double complex. By Proposition 5.4 we can identify

Ep,q
1 (b)∨ = E−p,n+1−q

1 (b) =
∧pV ⊗Hn+1−p−q(Y, Ωn+1−b+p

Y (log Xt))

with
∧pV ⊗RY,t(KY⊗Lb−p+1). We can identify this E1 term with the E1 term

of another spectral sequence. Consider the double complex B•,•(b) defined
by

B−i,j(b) =
∧iV ⊗KY ⊗

∧b−jΣY,L ⊗ Lj−i+1, j − i ≥ 0.

The complex B•,•(b) is a second quadrant double complex which consists of
the terms B−i,j(b) with 0 ≤ i ≤ b, 0 ≤ j ≤ b and j − i ≥ 0:

∧bV ⊗KY ⊗ L → . . . → KY ⊗ Lb+1

↑
. . .

...
. . . ↑∧n+2−bΣ∨

Y,L ⊗ L.

The horizontal differential in this complex is the differential of the Koszul
complex; the vertical differential is given by contraction with the 1–jet j1(s).
Let B•(b) = s(B•,•(b)) be the associated total complex. Set

B−i,j(b) = H0(Y,B−i,j(b)), Bk(b) = H0(Y,Bk(b)).

We have two spectral sequences associated to B•,•(b), given by filtering along
the rows or columns:

′Ep,q
1 (b) = Hq(Bp,•(b)) ⇒ Hp+q(B•(b))

′′Ep,q
1 (b) = Hq(B•,p(b)) ⇒ Hp+q(B•(b)).
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By definition

′E−p,n+1−q
1 (b) =

∧pV ⊗RY,t(KY ⊗ Lb−p+1).

It is not difficult to show that the isomorphism

E−p,n+1−q
1 (b) ∼= ′E−p,n+1−q

1 (b)

is compatible with the d1 maps in both spectral sequences; hence it induces an
isomorphism on the E2 terms. But this does not suffice to get an isomorphism
on the E∞ terms. In [23] we constructed a morphism of filtered complexes
B•(b) → C•(b) that induces an isomorphism of spectral sequences

E−p,n+1−q
r (b) ∼= ′E−p,n+1−q

r (b). (4)

To obtain the vanishing of the E∞ terms we look at the second spectral
sequence. We have

′′Ei,−j
1 (b) = Kj,i−j+1(KY ⊗

∧b−iΣY,L, L).

Lemma 5.7 Suppose that ′′Ei,−j
1 (b) = 0 for all (i, j) such that b − k + 1 ≤

i− j ≤ b. Then Ep,q
∞ (b) = 0 for all (p, q, b) such that p + q + b ≤ n + k.

Proof: It follows from the hypotheses of the Lemma that ′′Ea
∞(b) = 0 for all

b − k + 1 ≤ a ≤ b. As the spectral sequences ′′Ep,q
r (b) and ′Ep,q

r (b) converge
to the same limit, we find that ′Ea

∞(b) = 0. Hence ′E−p,n+1−q
∞ (b) = 0 for

all (p, q, b) such that p + q + b ≤ n + k and the proof is finished using the
isomorphism (4). ¤

We have finally reduced the proof to a statement about the vanishing of
certain Koszul cohomology groups. By Proposition 5.6 it suffices to show
that

H1(Y,
∧j+1ML ⊗KY ⊗

∧b−iΣY,L ⊗ Li−j) = 0

for all (i, j) such that b−k+1 ≤ i− j ≤ b. Take exterior powers in the exact
sequence (3) and twist by KY to obtain an exact sequence

0 → Ωn+2−b+i
Y → KY ⊗

∧b−iΣY,L → Ωn+1−b+i
Y → 0.
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Using this exact sequence we reduce to a vanishing statement with exterior
powers of the cotangent bundle.

Recall that a coherent sheaf F on a polarised variety (Y,OY (1)) is said
to be m–regular if

H i(Y,F(m− i)) = 0 for all i > 0.

Note that this definition depends on the choice of a polarisation on Y . The
Castelnuovo–Mumford regularity of F is the number

m(F) = min{m ∈ Z|F is m–regular}.
Let mi = m(Ωi

Y ) be the regularity of Ωi
Y . Following Paranjape we introduce

the number
mY = max{mi − i− 1|0 ≤ i ≤ dim Y }.

Note that this number is always nonnegative if Y is a projective variety, as
H i(Y, Ωi

Y ) 6= 0.

Exercise 5.8 Show that mY = 0 if Y is a projective space and that mY = 1
if Y is a smooth quadric.

If Y = Pn+1 and L = OP(1) then ML
∼= Ω1P(1) is 1–regular. Using a lemma

of M. Green [10] one can show (with some work) that
∧kML is k–regular on

Y .

Lemma 5.9
H i(Y, Ωj

Y ⊗
∧aML ⊗OY (k)) = 0

if i ≥ 1 and k + i ≥ mj + a.

Remark 5.10 The symmetrizer lemma from Lecture 3 follows from Propo-
sition 5.6 and Lemma 5.9 (applied with Y = Pn+1).

To finish the proof we have to sort out all the vanishing conditions of
this type and to translate these into conditions on the degrees (d0, . . . , dr) of
the hypersurfaces. In addition there are conditions coming from Proposition
5.6. These can be treated in a similar way at the cost of introducing stronger
degree conditions. The final result is:
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Theorem 5.11. Let (Y,OY (1)) be a smooth polarised variety of dimension
n + r + 1. Let d0, . . . , dr be natural numbers ordered in such a way that
d0 ≥ · · · ≥ dr. Define E = OY (d0) ⊕ . . .OY (dr) and let U ⊂ PH0(Y,E) be
the complement of the discriminant locus. Let mj be the regularity of Ωj

Y

and define
mY = max{mj − j − 1|0 ≤ j ≤ dim Y }.

Let c ≤ n be a nonnegative integer, and set µ = [n+c
2

]. Consider the condi-
tions

(C)
∑r

ν=min(c,r) dν ≥ mY + dim Y − 1;

(Ci)
∑r

ν=i dν + (µ− c + i)dr ≥ mY + dim Y + c− i.

If condition (C) is satisfied and if the conditions (Ci) are satisfied for all i
with 0 ≤ i ≤ min(c − 1, r), then for every smooth morphism g : T → U we
have Hn+k(YT , XT ) = 0 for all k ≤ c.

In some cases we can avoid the extra conditions coming from Proposition
5.4. Suppose that

(∗) H i(Y, Ωj
Y (k)) = 0 for all i > 0, j ≥ 0, k > 0.

If Y satisfies this condition, we can omit the condition (C). Examples of va-
rieties Y that satisfy condition (∗) are projective spaces and, more generally,
smooth toric varieties. Condition (∗) also holds if Y is an abelian variety.

Bibliographical references. A good introduction to Koszul cohomology is
[9]. A detailed proof of Theorem 5.11 can be found in [23, Thm. 3.13] (where
the condition c ≤ n should be added in the statement of the theorem). In
the case Y = PN effective versions of Nori’s theorem have been obtained by
Voisin [29] and by M. Asakura and S. Saito [2].

6 Applications of Nori’s theorem

We keep the notation of the previous section: let (Y,OY (1)) be a smooth
polarised variety and set E = OY (d0)⊕ . . .⊕OY (dr), S = PH0(Y, E). As a
first application of Nori’s theorem, we mention the following result.
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Proposition 6.1 Let X ⊂ Y be a complete intersection of multidegree
(d0, . . . , dr) and dimension n. Suppose that Z is a cycle of codimension
p ≤ n on Y such that Z ∩ Xs is rationally equivalent to zero for general
s ∈ S. If min(d0, . . . , dr) À 0 then cl(Z) = 0 in H2p(Y,Q).

Proof: Let XS ⊂ YS be the universal family of complete intersections with
inclusion map r : XS → YS. Set ZS = r∗p∗Y Z ∈ CHp(XS), and let η be the
generic point of S. As we have (cf. the lectures of J. Lewis)

CHp(Xη) = lim→
U⊂S

CHp(XU)

there exists a Zariski open subset U ⊂ S such that [ZU ] = 0 in CHp(XU),
hence cl(ZU) = 0. By Nori’s theorem the restriction map

H2p(YU ,Q) → H2p(XU ,Q)

is injective if min(d0, . . . , dr) À 0. Hence cl(p∗Y Z) = 0 and cl(Z) = 0 because
p∗Y : H2p(Y,Q) → H2p(YU ,Q) is injective. ¤

For cycles of codimension p < n, Nori has shown that the result of
Proposition 6.1 remains true under the weaker hypothesis that Z ∩ Xs is
algebraically equivalent to zero. This result is a generalisation of Griffiths’s
theorem.

Theorem 6.2 (Nori) (notation as in Proposition 6.1) Suppose that p < n
and that Z ∩Xs is algebraically equivalent to zero for very general s ∈ S. If
min(d0, . . . , dr) À 0 then clY (Z) = 0.

Proof: Set ZS = r∗p∗Y Z ∈ CHp(XS). By the definition of algebraic equiv-
alence, there exist a smooth morphism T → S, a family of smooth curves
CT → T , a relative divisor DT ∈ CH1

hom(CT /T ) and a cycle Γ ∈ CHp(CT ×T

XT ) such that ZT = Γ∗(DT ). The map Γ∗ : CH1(CT ) → CHp(XT ) is obtained
from the diagram

XT ×T CT
p2−→ CTyp1

XT

by setting Γ∗(D) = (p1)∗(p∗2D.Γ). Set T ′ = CT . As T ′ → T is a smooth
morphism, it follows from Nori’s theorem that H2p+1(YT ′ , XT ′) = 0 if p < n
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and min(d0, . . . , dr) À 0. Hence there exists γ ∈ H2p(YT ′ ,Q) such that
r∗γ = cl(Γ). Consider the diagram

YT ×T CT = YT ′
π2−→ T ′ = CTyπ1

YT

and put α = (π1)∗(π∗2DT .γ) ∈ H2p(YT ,Q). By construction we have

r∗α = r∗ZT = r∗p∗Y Z,

hence α = p∗Y Z by Nori’s theorem. If we restrict to the fiber over a point
t ∈ T we obtain

cl(Z) = π1(t)∗(π2(t)
∗Dt.γ|Y×{t}).

As cl(Dt) = 0, it follows that cl(Z) = 0. ¤

Remark 6.3 We can replace Betti cohomology by Deligne cohomology in
the proof of Theorem 6.2 to obtain a stronger conclusion: if Z ∩ Xs is
algebraically equivalent to zero for very general s, then the Deligne class
clD(Z) ∈ H2p

D (Y,Q(p)) is zero. Using this result, Albano and Collino [1] have
shown that if Y ⊂ P8 is a general cubic sevenfold and if X = Y ∩D1∩D2 is a
very general complete intersection of Y with two hypersurfaces of sufficiently
large degree, then Griff4(X)⊗Q 6= 0 (they even show that this vector space
is not finite dimensional). Note that the nonzero elements in the Griffiths
group could not have been detected by the Abel–Jacobi map as J4(X) = 0.

We have seen that Nori’s theorem implies the theorems of Noether–
Lefschetz and Green–Voisin. One obtains effective versions of these theorems
using Theorem 5.11 (take c = 0 and n = 2m resp. c = 1 and n = 2m − 1).
The degree bounds for these theorems are optimal if Y = Pn+r+1; see [21].

Nori’s theorem can also be used to study the regulator maps defined on
Bloch’s higher Chow groups.

Theorem 6.4 Let X be a very general complete intersection of multidegree
(d0, . . . , dr) in Y . If min(d0, . . . , dr) À 0 and 2p − k ≤ 2n − 1, the image of
the (rational) regulator map

cp,k : CHp(X, k)Q → H2p−k
D (X,Q(p))

is contained in the image of i∗ : H2p−k
D (Y,Q(p)) → H2p−k

D (X,Q(p)).
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The proof of this Theorem is analogous to the proof of Theorem 4.3; it
can be found in [20]. We consider the applications of this result to the higher
Chow groups CHp(X, 1) and CHp(X, 2). Recall that the group CHp

dec(X, 1)
of decomposable higher Chow cycles is defined as the image of the natural
map

CHp(X)⊗ C∗ → CHp(X, 1).

The cokernel of this map is denoted by CHp
ind(X, 1) (indecomposable higher

Chow cycles). Similarly we define H2p−1
D,dec(X,Z(p)) as the image of the natural

map
H2p−2
D (X,Z(p− 1))⊗H1

D(X,Z(1)) → H2p−1
D (X,Z(p)).

A higher Chow cycle z ∈ CHp(X, 1) is said to be R–decomposable (regulator
decomposable) if cp,1(z) ∈ H2p−1

D,dec(X,Z(p)).

From Theorems 6.4 and 5.11 we obtain the following result.

Theorem 6.5. Let X = V (d0, . . . , dr) ⊂ P2m+r+1 be a smooth complete
intersection of dimension 2m (m ≥ 1, d0 ≥ . . . ≥ dr), i : X → P2m+r+1 the
inclusion map. If X is very general and if

(C0)
∑r

i=0 di + (m− 1)dr ≥ 2m + r + 3

(C1)
∑r

i=1 di + mdr ≥ 2m + r + 2

the image of the (rational) regulator map

cm+1,1 : CHm+1(X, 1)Q → H2m+1
D (X,Q(m + 1))

coincides with the image of the composed map (N = 2m + r + 1)

CHm+1(PN , 1)Q
∼→ H2m+1

D (PN ,Q(m + 1)) → H2m+1
D (X,Q(m + 1)).

As CHm+1(PN , 1) ∼= C∗ it follows that every element z ∈ CHm+1(X, 1)
is R–decomposable modulo torsion. The exceptional cases include quartic
surfaces and cubic fourfolds. For these cases the regulator map has been
studied in [20] and [6]; in both cases the group of regulator indecomposable
higher Chow cycles is nonzero, and it is not even finitely generated.

One can think of CHp
dec(X, 1) as a kind of analogue of CHp

alg(X) for higher
Chow cycles, and of CHp

ind(X, 1) as an analogue of the Griffiths group. Collino
[6] has proved an analogue of Griffiths’s theorem for higher Chow cycles.

38



Theorem 6.6 Let (Y,OY (1)) be a smooth polarised variety and let X be a
very general complete intersection of multidegree (d0, . . . , dr) and dimension
n ≥ 2. Let Z ∈ CHp(Y, 1) be a higher Chow cycle such that Z ∩ Xs is
decomposable for very general s. If p ≤ n and min(d0, . . . , dr) À 0 then Z is
R–decomposable.

Proof: After passing to a suitable covering T → S of the base space S of
the universal family XS, we may assume that ZT = r∗p∗Y Z ∈ CHp

dec(XT , 1),
hence cp,1(ZT ) ∈ H2p−1

D,dec(XT ,Q(p)). Look at the commutative diagram

H2p−2
D (YT ,Q(p− 1))⊗H1

D(YT ,Q(1)) → H2p−1
D (YT ,Q(p))

↓ ↓
H2p−2
D (XT ,Q(p− 1))⊗H1

D(XT ,Q(1)) → H2p−1
D (XT ,Q(p)).

By Nori’s theorem the vertical maps in this diagram are isomorphisms if
p ≤ n and min(d0, . . . , dr) À 0. Hence p∗Y Z is R–decomposable, and by
restricting to a fiber Y × {t} we find that Z is R–decomposable. ¤

Remark 6.7 Collino applied this theorem to a cubic fourfold Y ⊂ P5 and
obtained that CH3

ind(Xs, 1) ⊗ Q is nonzero for a very general hypersurface
section Xs ⊂ Y of sufficiently large degree. (He even showed that this vector
space is infinite dimensional.)

For the higher Chow group CHp(X, 2) we obtain the following result.

Theorem 6.8 Let X = V (d0, . . . , dr) ⊂ P2m+r be a smooth complete inter-
section of dimension 2m − 1 (m ≥ 1, d0 ≥ . . . ≥ dr), i : X → P2m+r the
inclusion map. If X is very general and if

(C0)
∑r

i=0 di + (m− 1)dr ≥ 2m + r + 2

(C1)
∑r

i=1 di + mdr ≥ 2m + r + 1

the image of the (rational) regulator map

cm+1,2 : CHm+1(X, 2)Q → H2m
D (X,Q(m + 1))

is zero.
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Remark 6.9 The proof of Theorem 6.8 contains a small subtlety. To prove
it we do not need the full strength of Nori’s theorem, but the following result:
if Fm+1H2m+1(YT , XT ) = 0 and FmH2m(YT , XT ) = 0, then the restriction
map

H2m
D (YT ,Q(m + 1)) → H2m

D (XT ,Q(m + 1))

is surjective. A proof of Theorem 6.8 for plane curves appeared in [5, (7.14)].

Example 6.10 Let (Y,OY (1)) be a polarised abelian variety. As the tan-
gent bundle TY is trivial, condition (∗) is satisfied by the Kodaira vanishing
theorem. As Ωm

Y is trivial for all m, the proof of Theorem 5.11 shows that
we can substract mY + dim Y + 1 on the right hand side of the inequality of
condition (Ci). Hence condition (Ci) can be replaced by the weaker condition

(C ′
i)

∑r
ν=i dν + (µ− c + i)dr ≥ c− i− 1.

This condition is empty if c ≤ 2. For c = 2 we obtain a result on the Abel–
Jacobi map for complete intersections in abelian varieties without degree
conditions; see [23, Thm. 4.8].

Example 6.11 We consider an example mentioned in the introduction of
Nori’s paper. Let Y ⊂ P7 be a smooth quadric, and let X = Y ∩ V (d0, d1),
d0 ≥ d1, be a smooth complete intersection in Y . In this case condition (∗) is
not satisfied. As mY = 1, Paranjape’s results show that Hn+k(YT , XT ) = 0
for k ≤ 3 if d1 ≥ 9. As c = 3 and r = 1, the conditions of Theorem 5.11
read (C) : d1 ≥ 6, (C0) : d0 + d1 ≥ 10, (C1) : 2d1 ≥ 9. Using precise
vanishing theorems for the groups H i(Y, Ωj

Y (k)), we find that the bound in
condition (C) can be improved to d1 ≥ 5. By theorem 6.2 we obtain that
Griff3(X)⊗Q 6= 0 if X is very general and d1 ≥ 5. Note that Griff3(X)⊗Q =
0 if d0 + d1 < 6 by a result of Bloch and Srinivas [3].

As we have seen, Nori’s theorem cannot be applied to zero–cycles. Never-
theless it is possible to obtain results on zero cycles using Nori’s techniques.
As an example we mention a theorem of Voisin [28]. For a smooth variety X
we write A0(X) for the Chow group of zero cycles of degree zero on X.
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Theorem 6.12 (Voisin) Let S ⊂ P3 be a very general surface of degree
d ≥ 5, and let C ⊂ S be a smooth plane section with inclusion map i : C → S.
Then the kernel of the map

i∗ : A0(C) → A0(S)

coincides with the subgroup Tors(A0(C)) of torsion points of A0(C).

Proof: Over the moduli space B of pairs (S,C) as above we have universal
families CB and SB. By passing to a covering T of B we can spread out an
element z0 ∈ ker i∗ to a relative cycle ZT ∈ A0(CT /T ) such that ZT (t) ∈ ker i∗
for all t ∈ T and such that ZT (t0) = z0. As Z(t) is rationally equivalent to
zero for all t ∈ T (C) we may assume that r∗ clD(ZT ) ∈ H4

D(ST ,Q) is zero, by
replacing T by a suitable Zariski open subset of T . Set

UT = P3
T \ P2

T , VT = ST \ CT .

Consider the commutative diagram

H3
D(UT ,Q(2)) −→ H3

D(VT ,Q(2)) −→ H4
D(UT , VT ,Q(2))yr

y
y

H2
D(P2

T ,Q(1)) k∗−→ H2
D(CT ,Q(1)) −→ H3

D(P2
T , CT ,Q(1))y

yr∗

y
H4
D(P3

T ,Q(2)) −→ H4
D(ST ,Q(2)) −→ H5

D(P3
T , ST ,Q(2)).

Nori’s theorem cannot be applied to the groups H3(P2
T , CT ) and H5(P3

T , ST ),
but using a variant of Nori’s techniques we can show that

Hk(UT , VT ) = 0 for all k ≤ 4 if d ≥ 5.

Combining this result with the vanishing of Hk(UT ), we find that Hk(VT ) = 0
for all k ≤ 3. Hence H3

D(VT ,Q(1)) = 0 and

r∗ : H2
D(CT ,Q(1)) → H4

D(ST ,Q(2))

is injective. As clD(ZT ) ∈ ker r∗ we get clD(ZT ) = 0. By restriction to the
fiber over t0 we see that clD(z0) ∈ H2

D(C0,Q(1)) is zero. As H2
D(C0,Q(1)) ∼=

Pic(C0)⊗Q it follows that z0 ∈ Tors(A0(C0)). The inclusion Tors(A0(C)) ⊆
ker i∗ follows from Roitman’s theorem. ¤

Remark 6.13 It is possible to prove a similar result for curves that are
obtained by intersecting an ample divisor Y in a threefold W with a surface
S that varies in a sufficiently ample linear system on W ; see [22].
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A Deligne cohomology

We recall the definition of the Deligne and Deligne–Beilinson cohomology
groups.

Definition A.1 Let X be a smooth projective variety. Set Z(p) = (2πi)pZ.
The p–th Deligne complex on X is the complex

ZD(p) = (Z(p) → OX → Ω1
X → . . . → Ωp−1

X )

concentrated in degrees 0, . . . , p. The hypercohomology group Hk(ZD(p)) is
called the k–th Deligne cohomology group of X with coefficients in Z(p) and
is denoted by Hk

D(X,Z(p)).

Example A.2 The exponential sequence shows that ZD(1) ' O∗
X , hence

Hk
D(X,Z(1)) ∼= Hk−1(X,O∗

X).

Definition A.3 Let f : A• → B• be a morphism of complexes. The cone
complex associated to f is the complex C•(f) = B•[−1]⊕A• with differential
dC(b, a) = (dB(b) + f(a),−dA(a)). This complex fits into an exact sequence

0 → B•[−1] → C•(f) → A• → 0.

We say that two complexes A• and B• are quasi–isomorphic if they have
the same cohomology groups; notation A• ' B•.

Exercise A.4 Let f : A• → B• be a morhpism of complexes. Write K• =
ker f , Q• = coker f .

(i) If f is surjective, then C•(f) ' K•;

(ii) if f is injective, then C•(f) ' Q•[−1];

(iii) let B̄• be the quotient of B• by a subcomplex C• with inclusion map
i : C• → B•, and let p : B• → B̄• be the projection map. Then
C•(p◦f) ' C•(f − i).
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The de Rham complex is filtered by subcomplexes

σ≥pΩ
•
X = (Ωp

X → Ωp+1
X → . . .)

that start in degree p (this filtration is called ’filtration bête’ or stupid filtra-
tion). The quotient of Ω•

X by σ≥pΩ
•
X is denoted by σ<pΩ

•
X . As the Deligne

complex fits into an exact sequence

0 → σ<pΩ
•
X [−1] → ZD(p) → Z(p) → 0

we deduce from the previous exercise that

ZD(p) ' Cone(Z(p)⊕ σ≥pΩ
•
X → Ω•

X).

Hence the Deligne cohomology groups fit into a long exact sequence

Hk−1(X,C) → Hk
D(X,Z(p)) → Hk(X,Z(p))⊕ F pHk(X,C) → Hk(X,C).

If k = 2p we obtain a short exact sequence

0 → Jp(X) → H2p
D (X,Z(p)) → Hdgp(X) → 0.

There exists a Deligne cycle class map

clpD : CHp(X) → H2p
D (X,Z(p))

whose restriction to CHp
hom(X) coincides with the Abel–Jacobi map [8]. More

generally there exist regulator maps

cp,k : CHp(X, k) → H2p−k
D (X,Z(p))

on Bloch’s higher Chow groups CHp(X, k) that coincide with the Deligne
cycle class map if k = 0.

For quasi–projective varieties there exists a variant of Deligne cohomol-
ogy, called Deligne–Beilinson cohomology. Given a quasi–projective variety
X, choose a good compactification j : X → X̄ with boundary D = X \ X̄,
and choose injective resolutions I• of ZX(p) and J • of Ω•

X . Put

Rj∗ZX(p) = j∗I•, Rj∗Ω•
X = j∗J •.

There is a natural map of complexes

α : σ≥pΩ
•̄
X(log D)⊕Rj∗ZX(p) → Rj∗Ω•

X .
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The Deligne–Beilinson cohomology groups are defined as the hypercohomol-
ogy groups of the complex C•(α). As before they fit into an exact sequence

Hk−1(X,C) → Hk
D(X,Z(p)) → Hk(X,Z(p))⊕ F pHk(X,C) → Hk(X,C)

where F • denotes the Hodge filtration of the mixed Hodge structure on
Hk(X,C).
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en Géométrie Algébrique, SGA 7II, Lecture Notes in Math. 340,
Springer–Verlag (1973), 254–327.

[19] R. Lazarsfeld, Some applications of the theory of positive vector
bundles. In: Complete intersections (Acireale, 1983), 29–61, Lec-
ture Notes in Math., 1092, Springer, Berlin, 1984.

[20] S. Müller–Stach, Constructing indecomposable motivic cohomology
clas-ses on algebraic surfaces, J. Algebraic Geometry 6 (1997), 513–
543.

45



[21] J. Nagel, The Abel–Jacobi map for complete intersections, Indag.
Math. 8 (1997), 95–113.

[22] J. Nagel, A variant of a theorem of C. Voisin, Indag. Math. 12
(2001), 231–241.

[23] J. Nagel, Effective bounds for Hodge–theoretic connectivity, J. Alg.
Geom. 11 (2002), 1–32.

[24] M.V. Nori, Algebraic cycles and Hodge–theoretic connectivity, Inv.
Math. 111 (1993), 349–373.

[25] K. Paranjape, Cohomological and cycle–theoretic connectivity,
Ann. of Math. 140 (1994), 641–660.

[26] C. Voisin, lectures at Sophia–Antipolis, 1991.

[27] C. Voisin, Transcendental methods in the study of algebraic cycles,
in: Algebraic cycles and Hodge theory, Lecture Notes in Math.
1594, Springer–Verlag (1994).

[28] C. Voisin, Variations de structures de Hodge et zéro–cycles sur les
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