The generalized Hodge conjecture for the quadratic complex of lines in projective four-space

J. Nagel

1 Introduction

Let X be a smooth projective variety defined over \mathbb{C}. The generalized Hodge conjecture $\operatorname{GHC}(X, 2 p-1, p-1)$ (as corrected by Grothendieck) asserts that every \mathbb{Q}-sub Hodge structure $V \subset H^{2 p-1}(X)$ of level one is supported in codimension $p-1$, i.e., if $V \subset F^{p-1} H^{2 p-1}(X, \mathbb{C}) \cap H^{2 p-1}(X, \mathbb{Q})$ then there should exist a subvariety $Z \subset X$ of codimension $p-1$ such that $V \subset \operatorname{ker} H^{2 p-1}(X) \rightarrow H^{2 p-1}(X \backslash Z)$. Let $J_{\max }^{p}(X)$ be the abelian subvariety of the intermediate Jacobian $J^{p}(X)$ that is associated to the maximal sub Hodge structure of level one contained in $H^{2 p-1}(X)$, and let $J_{\mathrm{alg}}^{p}(X)=\psi_{X}\left(\mathrm{CH}_{\mathrm{alg}}^{p}(X)\right)$ be the image of the Chow group of codimension p cycles algebraically equivalent to zero under the Abel-Jacobi map. One has $J_{\text {alg }}^{p}(X) \subset J_{\max }^{p}(X)$, and $\operatorname{GHC}(X, 2 p-1, p-1)$ is true if and only if equality holds; see [Mu, Lemma 4.3].

Miyaoka [Mi] has proved that every smooth threefold X of Kodaira dimension $\kappa(X)=-\infty$ is uniruled; hence $\operatorname{GHC}(X, 3,1)$ holds by a Remark of Steenbrink [St, Prop (2.6)]. The conujecture $\operatorname{GHC}(X, 3,1)$ has been verified for Fermat hypersurfaces of degree ≤ 10 in $\mathbb{P}^{4}[\mathrm{Sh}]$, for the very general member of some families of threefolds with trivial canonical bundle (see [Bar 1] and $[\mathrm{Ba} 2]$) and for the very general member of some families of threefolds of general type [Ros].

Some higher-dimensional examples where $\operatorname{GHC}(X, 2 p-1, p-1)$ holds are (X general):
(i) $X=V(2,2) \subset \mathbb{P}^{2 p+1}, X=V(2,2,2) \subset \mathbb{P}^{2 p+2}$; cf. [Re], [T]
(ii) $(p=3) X=V(3) \subset \mathbb{P}^{6}$; see $[\mathrm{C}]$.
(iii) $X=V(1,1,1) \subset G(2, p+3)$; see [Don].
(iv) $(p=4) X=V(1,1) \subset G(3,6)$; see [Don].

Among the Fano threefolds is tha quadratic complex of lines in \mathbb{P}^{3}, which can be represented as an intersection of two quadrics in \mathbb{P}^{5}. The geometry of this variety has been studied extensively; see e.g. [GH, Chapter 6]. In this paper we consider the quadratic complex of lines in \mathbb{P}^{4}. This variety is a Fano fivefold X of index 3 whose cohomology group $H^{5}(X)$ carries a Hodge structure of level one with $h^{2,3}(X)=10$; its geometry has been studied by the classical geometers B. Segre, J. Semple and L. Roth (cf. Remarks 2.7 and 3.9). We prove that $\operatorname{GHC}(X, 5,2)$ holds if $X=V(2) \subset G(2,5)$ is general.

In Section 2 we show that for general X the Fano variety F_{X} of twoplanes contained in X is a smooth curve, and we compute its numerical invariants. The surjectivity of the Abel-Jacobi mapping associated to this family of two-planes is shown in Section 3.

The main motivation for the consideration of this example was a general result, which states that for very general complete intersections of sufficiently high multidegree in Grassmann varieties the image of the Abel-Jacobi map is, up to torsion, completely determined by the group of primitive Hodge classes of the Grassmann variety; cf. Remark 3.9. This paper is a revised version of the last chapter of my thesis. I would like to thank S. Müller-Stach, J.P. Murre and C. Peters for helpful discussions.

2 The family of planes

Let V be a complex vector space of dimension 5, and let $G=G(2, V)$ be the Grassmann variety of lines in $\mathbb{P}^{4}=\mathbb{P}(V)$. The variety G is embedded as a smooth six-dimensional subvariety of degree 5 in $\mathbb{P}^{9}=\mathbb{P}\left(\wedge^{2} V\right)$ by the Plücker embedding. We denote the line in \mathbb{P}^{4} corresponding to a point $x \in G$
by ℓ_{x}. A quadratic line complex in G is the intersection of G with a quadric $Q \subset \mathbb{P}^{9} ;$ it corresponds to a five-dimensional family of lines in \mathbb{P}^{4}.

Let $p \in \mathbb{P}(V)$ be a point, and let $\sigma(p)=\left\{x \in G: p \in \ell_{x}\right\}$ be the corresponding Schubert cycle. Since the tangent space $T_{x} G$ is spanned by

$$
T_{x} G \cap G=\left\{z \in G: \ell_{z} \cap \ell_{x} \neq \emptyset\right\}=\cup_{p \in \ell_{x}} \sigma(p)
$$

the line spanned by two points $x, y \in G$ is contained in G if and only if $\ell_{x} \cap \ell_{y} \neq \emptyset$. Hence G contains two families of 2-planes: the σ-planes (solid point-stars) and the ρ-planes (ruled planes) (cf. [SR, X, §4]). Let $h \subset \mathbb{P}^{4}$ be a hyperplane, let $p \in h$ be a point and let $w_{2} \subset \mathbb{P}^{4}$ be a $2-$ plane. The $\sigma-$ planes are the Schubert cycles $\sigma(p, h)=\left\{x \in G: p \in \ell_{x} \subset h\right\}$; the ρ-planes are the Schubert cycles $\sigma\left(w_{2}\right)=\left\{x \in G: \ell_{x} \subset w_{2}\right\}$.

Let $D\left(a_{1}, \ldots, a_{k}, n\right)$ be the flag variety of type $\left(a_{1}, \ldots, a_{k}, n\right)$, i.e., the variety that parametrizes flags of linear subspaces

$$
V_{a_{1}} \subset V_{a_{2}} \subset \ldots \subset V_{a_{k}} \subset W
$$

where W is a complex vector space of dimension n and $\operatorname{dim} V_{i}=i$. Instead of $D\left(a_{1}, \ldots, a_{k}, n\right)$ we sometimes write $D\left(a_{1}, \ldots, a_{k}, W\right)$.

The flag variety $D=D\left(a_{1}, \ldots, a_{k}, n\right)$ carries a sequence of universal subbundles

$$
H_{a_{1}} \subset H_{a_{2}} \subset \ldots H_{a_{k}} \subset H_{n}=W \otimes_{\mathbb{C}} \mathcal{O}_{D}
$$

Let $H_{i, j}=H_{i} / H_{j}(i>j)$ be the induced quotient bundles. The exact sequence $0 \rightarrow H_{j} \rightarrow H_{i} \rightarrow H_{i, j} \rightarrow 0$ is obtained by pulling back the tautological exact sequence on the Grassmann variety $G\left(a_{j}, a_{i}\right)$ via the projection map

$$
p_{i, j}: D\left(a_{1}, \ldots, a_{k}, n\right) \rightarrow G\left(a_{i}, a_{j}\right)
$$

The family of σ-planes on G is parametrized by the 7 -dimensional flag variety $D=D(1,4,5)$; the family of ρ-planes on G is parametrized by the 6 -dimensional flag variety $D(3,5)$. In the sequel we shall concentrate on the family of σ-planes on G. The Plücker embedding $i: G(2,5) \rightarrow \mathbb{P}^{9}$ sends a two-dimensional linear subspace $V_{2}=\left\langle v_{1}, v_{2}\right\rangle$ to the line in $\Lambda^{2} V$ spanned by $v_{1} \wedge v_{2}$. A coordinate-free description of the Plücker embedding is

$$
\begin{aligned}
i: G(2, V) & \longrightarrow \mathbb{P}\left(\bigwedge^{2} V\right) \\
\left(V_{2}, V\right) & \mapsto\left(\bigwedge^{2} V_{2}, \bigwedge^{2} V\right)
\end{aligned}
$$

Note that i is an embedding because the pair $\left(W, \bigwedge^{2} V\right) \in i(G)$ uniquely determines V_{2} by

$$
V_{2}=\{v \in V: v \wedge w=0 \text { for all } w \in W\} .
$$

Given a point $\left(V_{1}, V_{4}, V\right) \in D(1,4,5)$, we denote by $V_{1} \bigwedge V_{4}$ the subspace of $\bigwedge^{2} V$ spanned by the vectors $v \wedge w$, where $v \in V_{1}$ and $w \in V_{4}$. The Plücker embedding induces an embedding of the flag variety $D(1,4,5)$ into the Grassmann variety $G^{\prime}=G(3,10)$ of 2 -planes in \mathbb{P}^{9} : choose a vector v that spans V_{1} and a basis $\left\{v, v_{1}, v_{2}, v_{3}\right\}$ for V_{4}, and map the point $\left(V_{1}, V_{4}, V\right)$ to the 3-dimensional linear subspace of $\bigwedge^{2} V$ spanned by $\left\{v \wedge v_{1}, v \wedge v_{2}, v \wedge v_{3}\right\}$. A coordinate-free description of this map is

$$
\begin{aligned}
j: D=D(1,4,5) & \rightarrow G(3,10) \\
\left(V_{1}, V_{4}, V\right) & \mapsto\left(V_{1} \bigwedge V_{4}, \bigwedge^{2} V\right)
\end{aligned}
$$

Note that we can recover the pair $\left(V_{1}, V_{4}\right)$ from $\left(W, \bigwedge^{2} V\right) \in \operatorname{im} j$ by setting

$$
\begin{gathered}
V_{1}=\{v \in V: v \wedge w=0 \text { for all } w \in W\} \\
V_{4}=\{v \in V: v \wedge w=0 \text { for some } w \in W\} .
\end{gathered}
$$

Let $X=G \cap Q$ be a quadratic line complex. The quadric Q corresponds to a symmetric form $Q \in S^{2}\left(\bigwedge^{2} V^{\vee}\right)$. Let

$$
0 \rightarrow \mathcal{S}_{3} \rightarrow \bigwedge^{2} V \otimes \mathcal{O}_{G^{\prime}} \rightarrow \mathcal{Q}_{7} \rightarrow 0
$$

be the tautological exact sequence on $G^{\prime}=G(3,10)$. This sequence induces a surjective map of vector bundles

$$
S^{2}\left(\bigwedge^{2} V^{\vee}\right) \otimes \mathcal{O}_{G^{\prime}} \rightarrow S^{2} \mathcal{S}_{3}^{\vee}
$$

whose kernel we denote by K. Let $s: S^{2}\left(\bigwedge^{2} V^{\vee}\right) \rightarrow H^{0}\left(G^{\prime}, S^{2} \mathcal{S}_{3}^{\vee}\right)$ be the induced map on global sections. The Fano variety F_{X} of σ-planes contained in X is the zero scheme of the section $s(Q)$. Let

$$
0 \rightarrow j^{*} K \rightarrow S^{2}\left(\bigwedge^{2} V^{\vee}\right) \otimes \mathcal{O}_{D} \rightarrow j^{*} S^{2} \mathcal{S}_{3}^{\vee} \rightarrow 0
$$

be the exact sequence obtained by pullback to D. By composition of the inclusion map $\mathbb{P}\left(j^{*} K\right) \subset \mathbb{P}\left(S^{2} \bigwedge^{2} V^{\vee}\right) \times D$ and projection onto the first factor, we obtain a map

$$
\mathbb{P}\left(j^{*} K\right) \rightarrow \mathbb{P}\left(S^{2} \bigwedge^{2} V^{\vee}\right)
$$

that exhibits the projective bundle $\mathbb{P}\left(j^{*} K\right)$ as the universal family of Fano schemes of σ-planes over the family of quadratic line complexes (cf. [AK]).

To calculate the numerical invariants of the Fano scheme F_{X}, we determine the Chern classes of $j^{*} \mathcal{S}_{3}^{\vee}$.
Lemma 2.1. $j^{*} \mathcal{S}_{3}=H_{1} \otimes H_{4,1}$.
Proof: The fiber of $j^{*} \mathcal{S}_{3}$ over a point $x=\left(V_{1}, V_{4}, V\right)$ is $V_{1} \bigwedge V_{4}$. Since the natural map $V_{1} \bigwedge V_{4} \rightarrow V_{1} \otimes\left(V_{4} / V_{1}\right)$ is a canonical isomorphism, we obtain the desired isomorphism of vector bundles.

Remark 2.2. The previous result, whose original proof was simplified by a suggestion of L. Manivel, gives a method to compute the numerical invariants of the Fano schemes $F_{k}(X)$ of k-planes contained in X. It simplifies the method of computation used in [Ma].

The flag variety $D=D(1,4,5)$ is the incidence correspondence in $\mathbb{P}^{4} \times$ $\left(\mathbb{P}^{4}\right)^{\vee}$ with projections $p: D \rightarrow G(4,5)=\left(\mathbb{P}^{4}\right)^{\vee}$ and $q: D \rightarrow \mathbb{P}^{4}$. Note that $j^{*} \mathcal{S}_{3}=H_{1} \otimes H_{4,1}=q^{*}\left(\mathcal{Q}_{\mathbb{P}^{4}}(-1)\right)$. To describe the Chow ring $\mathrm{CH}^{*}(D)$, we note that the projection p gives D the structure of a projective bundle $\mathbb{P}\left(\mathcal{S}_{4}\right)$ over $G(4,5)$. Set $x=c_{1}\left(\mathcal{O}_{D}(1)\right)$ and $h=c_{1}\left(\mathcal{S}_{4}^{\vee}\right)$. The Chow ring of D is

$$
C H^{*}(D) \cong \mathbb{Z}[x, h] /\left(x^{4}-h x^{3}+h^{2} x^{2}-h^{3} x+h^{4}, h^{5}\right)
$$

The first Chern classes of the universal bundles $H_{1}=q^{*} \mathcal{O}_{\mathbb{P}^{4}}(-1)$ and $H_{4}=$ $p^{*} \mathcal{S}_{4}$ are $c_{1}\left(H_{1}\right)=-x, c_{1}\left(H_{4}\right)=-h$. Using the exact sequence

$$
0 \rightarrow H_{4,1}^{\vee} \rightarrow H_{4}^{\vee} \rightarrow H_{1}^{\vee} \rightarrow 0
$$

we compute the Chern polynomial of $H_{4,1}^{\vee}$:

$$
\begin{aligned}
c\left(H_{4,1}^{\vee}\right) & =\left(1+h t+h^{2} t^{2}+h^{3} t^{3}+h^{4} t^{4}\right)(1+x t)^{-1} \\
& =1+(h-x) t+\left(h^{2}-h x+x^{2}\right) t^{2}+\left(h^{3}-h^{2} x+h x^{2}-x^{3}\right) t^{3}
\end{aligned}
$$

Using Lemma 2.1, we find that the Chern classes of $j^{*} \mathcal{S}_{3}^{\vee}$ are

$$
\begin{aligned}
c_{1}\left(j^{*} \mathcal{S}_{3}^{\vee}\right) & =3 c_{1}\left(H_{1}^{\vee}\right)+c_{1}\left(H_{4,1}^{\vee}\right)=h+2 x \\
c_{2}\left(j^{*} \mathcal{S}_{3}^{\vee}\right) & =3 c_{1}\left(H_{1}^{\vee}\right)^{2}+2 c_{1}\left(H_{1}^{\vee}\right) c_{1}\left(H_{4,1}^{\vee}\right)+c_{2}\left(H_{4,1}^{\vee}\right) \\
& =2 x^{2}+h x+h^{2} \\
c_{3}\left(j^{*} \mathcal{S}_{3}^{\vee}\right) & =c_{1}\left(H_{1}^{\vee}\right)^{3}+c_{1}\left(H_{1}^{\vee}\right)^{2} c_{1}\left(H_{4,1}^{\vee}\right)+c_{1}\left(H_{1}^{\vee}\right) c_{2}\left(H_{4,1}^{\vee}\right)+c_{3}\left(H_{4,1}^{\vee}\right) \\
& =h x^{2}+h^{3} .
\end{aligned}
$$

The top Chern class of $E=S^{2}\left(j^{*} \mathcal{S}_{3}^{\vee}\right)$ is

$$
\begin{aligned}
c_{6}(E) & =8 c_{1}\left(j^{*} \mathcal{S}_{3}^{\vee}\right) c_{2}\left(j^{*} \mathcal{S}_{3}^{\vee}\right) c_{3}\left(j^{*} \mathcal{S}_{3}^{\vee}\right)-8 c_{3}\left(j^{*} \mathcal{S}_{3}^{\vee}\right)^{2} \\
& =32 h x^{5}+24 h^{2} x^{4}+56 h^{3} x^{3}+24 h^{4} x^{2}+24 h^{5} x \\
& =80 h^{3} x^{3} .
\end{aligned}
$$

Let $\pi: \mathcal{X} \rightarrow \mathbb{P} H^{0}\left(\mathbb{P}^{9}, \mathcal{O}_{\mathbb{P}^{9}}(2)\right)$ be the universal family of quadratic line complexes. Set $X_{t}=\pi^{-1}(t)$.

Lemma 2.3. If $X \subset G$ is a general quadratic line complex, then F_{X} is a smooth curve of genus 161.

Proof: Consider the universal family of Fano schemes

$$
p: \mathbb{P}\left(j^{*} K\right) \rightarrow \mathbb{P}\left(S^{2} \bigwedge^{2} V^{\vee}\right)
$$

Note that $p^{-1}(t)=F_{X_{t}}=D \cap F_{2}\left(Q_{t}\right)$, where $F_{2}\left(Q_{t}\right)$ is the Fano variety of 2 -planes contained in the quadric Q_{t}. For a general $Q \in \mathbb{P}\left(\bigwedge^{2} S^{2} V^{\vee}\right)$ we shall compute the intersection $[D] .\left[F_{2}(Q)\right] \in \mathrm{CH}^{20}\left(G^{\prime}\right), G^{\prime} \cong G(3,10)$. Because $\left[F_{2}(Q)\right]=c_{6}\left(S^{2} \mathcal{S}_{3}^{\vee}\right)$, we have

$$
\begin{aligned}
{[D] \cdot\left[F_{2}(Q)\right] } & =j_{*}\left(j^{*}\left[F_{2}(Q)\right]\right) \\
& =j_{*} c_{6}(E) \\
& =j_{*}\left(80 h^{3} x^{3}\right)
\end{aligned}
$$

The projection formula shows that

$$
\begin{aligned}
j_{*}\left(80 h^{3} x^{3}\right) \cdot c_{1}\left(\mathcal{S}_{3}^{\vee}\right) & =j_{*}\left(80 h^{3} x^{3} \cdot j^{*} c_{1}\left(\mathcal{S}_{3}^{\vee}\right)\right) \\
& =j_{*}\left(80 h^{3} x^{3} \cdot(2 x+h)\right) \\
& =240,
\end{aligned}
$$

where we have used that $h^{3} x^{4}=h^{4} x^{3}$. Hence $[D] .\left[F_{2}(Q)\right]=j_{*}\left(80 h^{3} x^{3}\right) \neq 0$ and $D \cap F_{2}(Q) \neq \emptyset$ for general Q by Kleiman's transversality theorem [HAG, III, Thm. 10.8]. It follows that the map p is dominant, and hence surjective. As $\mathbb{P}\left(j^{*} K\right)$ is a smooth and irreducible variety of dimension 55 , the general fiber F_{X} is a smooth curve by generic smoothness [HAG, III, Cor. 10.7]. The genus of F_{X}, for general X, is computed using the exact sequences

$$
\begin{array}{r}
\left.\left.0 \rightarrow T_{F_{X}} \rightarrow T_{D}\right|_{F_{X}} \rightarrow E\right|_{F_{X}} \rightarrow 0 \\
0 \rightarrow T_{v} \rightarrow T_{D} \rightarrow p^{*} T_{G(4,5)} \rightarrow 0 \\
0 \rightarrow \mathcal{O}_{D} \rightarrow p^{*} \mathcal{S}_{4} \otimes \mathcal{O}_{D}(1) \rightarrow T_{v} \rightarrow 0 . \tag{3}
\end{array}
$$

From the sequences (2) and (3) we obtain

$$
c_{1}\left(T_{D}\right)=c_{1}\left(T_{v}\right)+c_{1}\left(p^{*} T_{G(4,5)}\right)=4 x-h+5 h=4 x+4 h .
$$

Let $j_{X}: F_{X} \rightarrow D$ be the inclusion map. The exact sequence (1) shows that

$$
\begin{aligned}
\left(j_{X}\right)_{*} c_{1}\left(F_{X}\right) & =\left(c_{1}\left(T_{D}\right)-c_{1}\left(S^{2} \mathcal{S}_{3}^{\vee}\right)\right) \cdot\left[F_{X}\right] \\
& =(4 x+4 h-4(2 x+h)) \cdot 80 h^{3} x^{3} \\
& =-320 h^{3} x^{4}=-320 h^{4} x^{3},
\end{aligned}
$$

hence $2-2 g\left(F_{X}\right)=-320$.

Since the vector bundle E is not ample, (cf. Remark 3.2), it is not clear whether the curve F_{X} is connected. To show that F_{X} is connected, we calculate the cohomology of the exterior powers of E^{\vee} on the flag variety D. We refer to $[\mathrm{FH}]$ and $[\mathrm{Hu}]$ for basic facts concerning representation theory. Let G be a connected and simply connected complex Lie group, and let $P \subset G$ be a parabolic subgroup. The quotient space $Y=G / P$ is a compact homogeneous space.

Let R^{+}be the finite set of positive roots, and let $T \subset G$ be a maximal torus. Let B be the Borel subgroup generated by T and the negative root groups. The Killing form induces an inner product (,) on the character group $\Lambda=\operatorname{Hom}\left(T, \mathbb{C}^{*}\right)$. A weight $\lambda_{i} n \Lambda$ is called singular if $(\lambda, \alpha)=0$ for some positive root $\alpha \in R^{+}$. If λ is not singular, it is called regular and we define

$$
\operatorname{index}(\lambda)=\#\left\{\alpha \in R^{+}:(\lambda, \alpha)<0\right\}
$$

The cohomology groups of irreducible homogeneous vector bundles, i.e., vector bundles that are induced by irreducible representations of P, can be computed by the following theorem of Bott (see [Bott, Theorem IV']):

Theorem 2.4 (Bott) Let P be a parabolic subgroup of a semisimple complex Lie group G. Let W_{λ} be the irreducible P-module with highest weight λ and let $E_{\lambda}=G \times{ }_{P} W_{\lambda}$ the corresponding homogeneous vector bundle on $Y=G / P$. Let $\delta=\sum_{i} \lambda_{i}$ be the sum of the fundamental dominant weights, and let W be the Weyl group.
(i) If $\lambda+\delta$ is singular, then $H^{p}\left(Y, E_{\lambda}\right)=0$ for all $p \geq 0$.
(ii) If $\lambda+\delta$ is regular, then

$$
H^{p}\left(Y, E_{\lambda}\right)=\left\{\begin{array}{cc}
0 & \text { if } p \neq \operatorname{index}(\lambda+\delta) \\
\Gamma_{\mu-\delta} & \text { if } p=\operatorname{index}(\lambda+\delta)
\end{array}\right.
$$

where μ is the unique dominant weight in the W-orbit of $\lambda+\delta$ and $\Gamma_{\mu-\delta}$ denotes the irreducible G-module with highest weight $\mu-\delta$.

Choose a basis $\left\{e_{1}, \ldots, e_{5}\right\}$ for V, and let $W \subset V$ be the subspace spanned by e_{2}, e_{3} and e_{4}. Let $U \subset V$ be the one-dimensional subspace spanned by e_{5}. The flag variety D is a homogeneous space of the form $D=\operatorname{SL}(5, \mathbb{C}) / P$, where

$$
P=\left\{\left(\begin{array}{ccc}
h_{1} & 0 & 0 \\
h_{2} & h_{3} & 0 \\
h_{4} & h_{5} & h_{6}
\end{array}\right): h_{1}, h_{6} \in \mathbb{C}^{*}, h_{3} \in \mathrm{GL}(3, \mathbb{C}), h_{1} \cdot \operatorname{det}\left(h_{3}\right) \cdot h_{6}=1\right\}
$$

Let $\rho: P \rightarrow W$ be the representation of P defined by $\rho(h)=h_{3}$, and let $\chi: P \rightarrow U$ be the character $\chi(h)=h_{6}$. The homogeneous vector bundle $j^{*} \mathcal{S}_{3}$ corresponds to the irreducible representation $\rho \otimes \chi: P \rightarrow W \otimes U$. Since

$$
\begin{aligned}
S^{2}(W \otimes U) & =S^{2} W \otimes U^{\otimes 2} \\
\bigwedge^{m} S^{2}(W \otimes U) & =\bigwedge^{m}\left(S^{2} W\right) \otimes U^{\otimes 2 m}
\end{aligned}
$$

it suffices to determine the highest weights of the representations $\bigwedge^{m}\left(S^{2} W\right)$ for $1 \leq m \leq 6$.

The representation ρ is induced by the standard representation of the semisimple part $P_{\text {ss }} \cong \mathrm{SL}(3, \mathbb{C})$. The irreducible representation of $\mathrm{SL}(3, \mathbb{C})$ with highest weight $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)=\beta_{2} e_{2}+\beta_{3} e_{3}+\beta_{4} e_{4}$ is denoted by $\Gamma_{\beta_{2}, \beta_{3}, \beta_{4}}$.

Lemma 2.5. The decompositions of the exterior powers $\bigwedge^{k}\left(S^{2} W\right)$ into irreducible representations of $\mathrm{SL}(3, \mathbb{C})$ are

$$
\begin{array}{rlrl}
S^{2} W & \cong \Gamma_{2,0,0} & & \bigwedge^{4}\left(S^{2} W\right) \cong \Gamma_{4,3,1} \\
\bigwedge^{2}\left(S^{2} W\right) \cong \Gamma_{3,1,0} & \bigwedge^{5}\left(S^{2} W\right) \cong \Gamma_{4,4,2} \\
\bigwedge^{3}\left(S^{2} W\right) \cong \Gamma_{4,1,1} \oplus \Gamma_{3,3,0} & & \bigwedge^{6}\left(S^{2} W\right) \cong \Gamma_{4,4,4}
\end{array}
$$

Proof: This follows either from direct computation of the weights or by applying Formula (2.6) in [JPW].

Note that a weight $\lambda=\left(\beta_{1}, \ldots, \beta_{5}\right)$ of $\operatorname{SL}(5, \mathbb{C})$ is singular if and only if there exist indices $1 \leq i<j \leq 5$ such that $\beta_{i}=\beta_{j}$. The index of $\lambda=\left(\beta_{1}, \ldots, \beta_{5}\right)$ is

$$
\begin{aligned}
\operatorname{index}(\lambda) & =\#\left\{\alpha \in R^{+}:(\lambda, \alpha)<0\right\} \\
& =\#\left\{(i, j): 1 \leq i<j \leq 5, \beta_{i}<\beta_{j}\right\} .
\end{aligned}
$$

Let $\delta=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=4 e_{1}+3 e_{2}+2 e_{3}+e_{4}$ be the sum of the fundamental dominant weights.

Using Lemma 2.5, we make a table of the highest weights λ_{i} associated to the vector bundles $\bigwedge^{k} E^{\vee}$ and the indices of $\lambda_{i}+\delta$ (if the weight is singular, we put a bar). Note that the highest weight of an irreducible representation of P is dominant for the semisimple part $P_{\mathrm{ss}} \cong \mathrm{SL}(3, \mathbb{C})$ of P. To emphasize this we write $\beta_{1} e_{1}+\ldots+\beta_{5} e_{5}=\left(\beta_{1} ; \beta_{2}, \beta_{3}, \beta_{4} ; \beta_{5}\right)$.

	λ_{i}	$\operatorname{index}\left(\lambda_{i}+\delta\right)$
E^{\vee}	$(0 ; 2,0,0 ; 2)$	-
$\bigwedge^{2} E^{\vee}$	$(0 ; 3,1,0 ; 4)$	-
$\bigwedge^{3} E^{\vee}$	$(0 ; 4,1,1 ; 6)$	4
	$(0 ; 3,3,0 ; 6)$	-
$\bigwedge^{4} E^{\vee}$	$(0 ; 4,3,1 ; 8)$	6
$\bigwedge^{5} E^{\vee}$	$(0 ; 4,4,2 ; 10)$	6
$\bigwedge^{6} E^{\vee}$	$(0 ; 4,4,4 ; 12)$	7

Lemma 2.6. If $X \subset G$ is a general quadratic line complex, the curve F_{X} is connected.

Proof: In Lemma 2.3 we showed that F_{X} is a smooth curve. Since F_{X} is the zero locus of the global section $s(Q) \in H^{0}(D, E)$, we have a Koszul resolution

$$
0 \rightarrow \bigwedge^{6} E^{\vee} \rightarrow \cdots \rightarrow \bigwedge^{2} E^{\vee} \rightarrow E^{\vee} \rightarrow \mathcal{O}_{D} \rightarrow \mathcal{O}_{F_{X}} \rightarrow 0
$$

for $\mathcal{O}_{F_{X}}$. Hence $H^{0}\left(F_{X}, \mathcal{O}_{F_{X}}\right) \cong H^{0}\left(D, \mathcal{O}_{D}\right)=\mathbb{C}$ if $H^{p}\left(D, \bigwedge^{p} E^{\vee}\right)=0$ for $1 \leq p \leq 6$. This follows from Theorem 2.4, as the weights λ_{i} associated to $\bigwedge^{p} E^{\vee}$ are either singular or have index $\left(\lambda_{i}+\delta\right) \neq p$.

Remark 2.7. The quadratic complex of lines in \mathbb{P}^{4} has been studied from a different point of view by B. Segre [Seg]. He considers the Fano variety $F_{3}(G)$ of 3 -planes on $G(2,5)$. Since every 3-plane contained in G is a Schubert cycle $\sigma(p)$ of lines through a point $p \in \mathbb{P}^{4}, F_{3}(G)$ is isomorphic to \mathbb{P}^{4}. A point $p \in \mathbb{P}^{4}$ is called singular (with respect to X) if the corresponding 3plane $\sigma(p)$ is tangent to the quadric $Q \subset \mathbb{P}^{9}$ that defines X. For a general quadratic line complex X, Segre claims the following results:

1. The singular points are parametrized by a sextic hypersurface $\Sigma \subset \mathbb{P}^{4}$.
2. The points $p \in \mathbb{P}^{4}$ such that $\operatorname{rank}\left(\left.Q\right|_{\sigma(p)}\right) \leq 2$ (i.e., the restriction of Q to $\sigma(p)$ is a union of two planes) are parametrized by a smooth curve $C \subset \Sigma$ of degree 40 and genus 81 .

To rephrase these results in modern language, we consider the map

$$
\begin{aligned}
g: \mathbb{P}^{4} & \rightarrow G\left(4, \bigwedge^{2} V\right) \\
\left(V_{1}, V_{5}\right) & \mapsto\left(V_{1} \bigwedge V_{5}, \bigwedge^{2} V\right)
\end{aligned}
$$

that embeds $F_{3}(G) \cong \mathbb{P}^{4}$ as a subvariety of the Grassmann variety $G^{\prime}=$ $G(4,10)$ of 3 -planes in \mathbb{P}^{9}. Set $F=g^{*} \mathcal{S}_{4}$, and let $\mathcal{Q}_{\mathbb{P}^{4}}$ be the universal quotient bundle on \mathbb{P}^{4}. As before, one shows that $F=H_{1} \otimes H_{5,1}=\mathcal{Q}_{\mathbb{P}^{4}}(-1)$. Pull back the natural map $S^{2}\left(\bigwedge^{2} V^{\vee}\right) \otimes \mathcal{O}_{G^{\prime}} \rightarrow S^{2}\left(\mathcal{S}_{4}^{\vee}\right)$ to obtain a map $\tilde{s}: S^{2}\left(\bigwedge^{2} V^{\vee}\right) \otimes \mathcal{O}_{\mathbb{P}^{4}} \rightarrow S^{2} F^{\vee}$. The image $\tilde{s}(Q) \in S^{2} F^{\vee}$ corresponds to a symmetric bundle map $f: F \rightarrow F^{\vee}$. Let

$$
D_{k}(f)=\left\{p \in \mathbb{P}^{4}: \text { corank } f(p) \geq k\right\}
$$

be the k th degeneracy locus of f. If $(p, h) \in F_{X}$, then $Q \cap \sigma(p)$ contains the $2-$ plane $\sigma(p, h)$. Hence p is a singular point, and we have a well-defined map $\tau: F_{X} \rightarrow C=D_{2}(f)$ that sends (p, h) to p; the map τ is a double covering, ramified over $D_{3}(f)$. It follows that if Q is general, the degeneracy loci $\Sigma=D_{1}(f)$ and $C=D_{2}(f)$ have the expected codimension; using the formulas in [HT], we find that $\operatorname{deg} \Sigma=6$ and $\operatorname{deg} C=40$. I did not verify that $D_{3}(f)=\emptyset$; if this locus is empty, then σ is an unramified covering and the Riemann-Hurwitz formula shows that the genus of C is 81 , as claimed by B. Segre.

3 Infinitesimal Abel-Jacobi map

To study the infinitesimal Abel-Jacobi mapping associated to the family of $\sigma-$ planes on a general quadratic line complex $X \subset G(2,5)$, we need information on the normal bundle $N_{L, X}$ of a σ-plane $L \subset X$. The normal bundle $N_{L, G}$ has been determined in [P]; we introduce some notation, and then recall the general result.

Let $G(r+1, V)$ be the Grassmann variety of r-planes in $\mathbb{P}(V)$, where V is a complex vector space of dimension $n+1$. We write L_{x} for the r-plane corresponding to a point $x \in G(r+1, V)$. Let $h \subset \mathbb{P}(V)$ be a hyperplane and $p \in h$ a point. Consider the following types of Schubert cycles:

$$
\begin{aligned}
& Z_{1}=\sigma(h)=\left\{x \in G: L_{x} \subset h\right\} \cong G(r+1, n) \\
& Z_{2}=\sigma(p)=\left\{x \in G: p \in L_{x}\right\} \cong G(r, n) \\
& Z_{3}=\sigma(p, h)=\left\{x \in G: p \in L_{x} \subset h\right\} \cong G(r, n-1) .
\end{aligned}
$$

Let

$$
\begin{equation*}
0 \rightarrow \mathcal{S} \rightarrow V \otimes \mathcal{O}_{G} \rightarrow \mathcal{Q} \rightarrow 0 \tag{4}
\end{equation*}
$$

be the tautological exact sequence on $G(r+1, n+1)$, and let \mathcal{S}_{i} (resp. \mathcal{Q}_{i}) be the universal subbundle (resp. quotient bundle) on the Grassmann variety $Z_{i}(i=1,2,3)$.

Proposition 3.1 (cf. [P, Prop. 2.4]) The normal bundle of Z_{3} in $G=$ $G(r+1, n+1)$ is

$$
N_{Z_{3}, G} \cong \mathcal{S}_{3}^{\vee} \bigoplus \mathcal{Q}_{3} \bigoplus \mathcal{O}_{Z_{3}}
$$

Proof: By comparison of the tautological exact sequence on Z_{1} and the restriction of (4) to Z_{1} we find an exact sequence

$$
0 \rightarrow \mathcal{Q}_{1} \rightarrow \mathcal{Q}_{Z_{1}} \rightarrow \mathcal{O}_{Z_{1}} \rightarrow 0
$$

that splits, as $H^{1}\left(Z_{1}, \mathcal{Q}_{1}\right)=0$ by the Bott vanishing theorem. Hence $\left.\mathcal{Q}\right|_{Z_{1}}=$ $\mathcal{Q}_{1} \bigoplus \mathcal{O}_{Z_{1}}$. By duality it follows that $\left.\mathcal{S}\right|_{Z_{2}}=\mathcal{S}_{2} \bigoplus \mathcal{O}_{Z_{2}}$. The other restrictions are $\left.\mathcal{S}\right|_{Z_{1}}=\mathcal{S}_{1},\left.\mathcal{Q}\right|_{Z_{2}}=\mathcal{Q}_{2}$. As Z_{3} is a Scubert cycle of type Z_{1} inside Z_{2}, we obtain

$$
\left.\mathcal{S}\right|_{Z_{3}}=\mathcal{S}_{3} \bigoplus \mathcal{O}_{Z_{3}},\left.\mathcal{Q}\right|_{Z_{3}}=\mathcal{Q}_{3} \bigoplus \mathcal{O}_{Z_{3}}
$$

Hence

$$
\begin{aligned}
\left.T_{G}\right|_{Z_{3}} & =\left.\left(\mathcal{S}^{\vee} \otimes \mathcal{Q}\right)\right|_{Z_{3}} \\
& =\mathcal{S}_{3}^{\vee} \otimes \mathcal{Q}_{3} \bigoplus \mathcal{S}_{3}^{\vee} \bigoplus \mathcal{Q}_{3} \bigoplus \mathcal{O}_{Z_{3}}
\end{aligned}
$$

and the result follows.

Remark 3.2 The bundles \mathcal{S}^{\vee} and \mathcal{Q} are not ample (unless they have rank one), as their restrictions to curves contained in Z_{3} have a quotient line bundle of degree zero; see [P, Props. 2.2 and 2.3].

We return to the Grassmannian $G=G(2,5)$ of lines in \mathbb{P}^{4}.
Corollary 3.3 Let $L_{0} \subset G=G(2,5)$ be a σ-plane, and let $\mathcal{Q}_{L_{0}}$ be the universal quotient bundle on $L_{0} \cong \mathbb{P}^{2}$. The normal bundle of L_{0} in G is

$$
N_{L_{0}, G} \cong \mathcal{O}_{L_{0}}(1) \bigoplus \mathcal{Q}_{L_{0}} \bigoplus \mathcal{O}_{L_{0}}
$$

Let $X \subset G$ be a general quadratic line complex. In Lemmas 2.3 and 2.6 we saw that the family of σ-planes on X is parametrized by a smooth, irreducible curve F_{X} of genus 161. Let

$$
\Phi_{F_{X}}: F_{X} \rightarrow J^{3}(X)
$$

be the Abel-Jacobi mapping associated to this family of planes (note that it is only well-defined up to translation). By the universal property of the Jacobian $J\left(F_{X}\right)$ this map factorizes over a map

$$
\Phi: J\left(F_{X}\right) \rightarrow J^{3}(X)
$$

Let

be the incidence correspondence. The induced map

$$
q_{*} \circ p^{*}: H_{1}\left(F_{X}, \mathbb{Z}\right) \rightarrow H_{5}(X, \mathbb{Z})
$$

is called the cylinder homomorphism associated to the family F_{X}. It sends a 1-chain $\gamma \subset F_{X}$ to the 5 -chain $\cup_{x \in \gamma} L_{x}$ swept out on X by the planes L_{x}, $x \in \gamma$. Under Poincaré duality the cylinder homomorphism corresponds to a homomorphism

$$
\psi_{\mathbb{Z}}: H^{1}\left(F_{X}, \mathbb{Z}\right) \rightarrow H^{5}(X, \mathbb{Z})
$$

Its complexification $\psi_{\mathbb{C}}$ is a morphism of Hodge structures of type $(2,2)$ that induces a map

$$
\psi: H^{0}\left(\Omega_{F_{X}}^{1}\right)^{\vee}=H^{0,1}\left(F_{X}\right) \rightarrow H^{2,3}(X)=H^{2}\left(\Omega_{X}^{3}\right)^{\vee}
$$

Choose a point $0 \in F_{X}$ and let $L_{0} \subset X$ be the corresponding σ-plane. The following result is due to Griffiths and Welters. Note that the adjunction formula shows that $\operatorname{det}\left(N_{L_{0}, X}\right) \cong \mathcal{O}_{L_{0}}$.

Lemma 3.4.

(i) The transpose of the infinitesimal Abel-Jacobi mapping is the composition of the maps

$$
\begin{aligned}
H^{2}\left(X, \Omega_{X}^{3}\right) & \longrightarrow H^{2}\left(L_{0},\left.\Omega_{X}^{3}\right|_{L_{0}}\right) \\
H^{2}\left(L_{0},\left.\Omega_{X}^{3}\right|_{L_{0}}\right) & \longrightarrow H^{2}\left(L_{0}, K_{L_{0}} \otimes \bigwedge^{2} N_{L_{0}, X}\right) \\
H^{2}\left(L_{0}, K_{L_{0}} \otimes \bigwedge^{2} N_{L_{0}, X}\right) & \xrightarrow{\sim} H^{0}\left(L_{0}, N_{L_{0}, X}\right)^{\vee} \\
H^{0}\left(L_{0}, N_{L_{0}, X}\right)^{\vee} & \longrightarrow T_{F_{X}, 0}^{\vee}
\end{aligned}
$$

(ii) The composed map

$$
\tau: H^{2}\left(X, \Omega_{X}^{3}\right) \rightarrow H^{2}\left(L_{0}, K_{L_{0}} \otimes \bigwedge^{2} N_{L_{0}, X}\right)
$$

fits into a commutative diagram

with exact columns.
Proof: For (i), see [G, Thm. 2.25]. Part (ii) is essentially due to Welters [Wel]: take exterior powers in the two bottom rows of the commutative diagram

and take the tensor product with $K_{X} \otimes \mathcal{O}_{L_{0}}$ to obtain a commutative diagram

$$
\left.\begin{array}{rlllll}
0 & \rightarrow \bigwedge^{2} T_{X} \otimes \mathcal{O}_{L_{0}} & \rightarrow \bigwedge^{2} T_{G} \otimes \mathcal{O}_{L_{0}} & \rightarrow & T_{X} \otimes N_{X, G} \otimes \mathcal{O}_{L_{0}} & \rightarrow 0 \\
0 & \rightarrow \bigwedge^{2} N_{L_{0}, X} & \rightarrow & \bigwedge^{2} N_{L_{0}, G} & \rightarrow & N_{L_{0}, X} \otimes N_{X, G}
\end{array}\right]
$$

The desired commutative diagram is obtained from the associated long exact sequences in cohomology by composing with the map on cohomology groups induced by the restriction $\mathcal{O}_{X} \rightarrow \mathcal{O}_{L_{0}}$.

Lemma 3.5.

(i) $\operatorname{ker} \alpha \neq 0$.
(ii) β is surjective.

Proof: (i): The Hilbert scheme $\operatorname{Hilb}_{X}^{P}$ that parametrizes $2-$ planes in X is the union of F_{X} and a finite number of points (corresponding to the ρ planes contained in X). Hence the tangent space at 0 to F_{X} is isomorphic to $H^{0}\left(L_{0}, N_{L_{0}, X}\right)$. As

$$
h^{2}\left(L_{0}, \bigwedge^{2} N_{L_{0}, X}(-3)\right)=h^{0}\left(L_{0}, N_{L_{0}, X}\right)=1
$$

by Serre duality, Lemma 3.4 shows that

$$
\operatorname{ker} \alpha \neq 0 \Longleftrightarrow H^{2}\left(L_{0}, \bigwedge^{2} N_{L_{0}, G}(-3)\right)=H^{2}\left(L_{0}, N_{L_{0}, X}(-1)\right)
$$

We shall show that both cohomology groups vanish. By Corollary 3.3 we have

$$
\bigwedge^{2} N_{L_{0}, G}^{\vee} \cong \bigwedge^{2}\left(\mathcal{Q}_{L_{0}}^{\vee} \oplus \mathcal{O}_{L_{0}}(-1) \oplus \mathcal{O}_{L_{0}}\right) \cong \bigoplus^{2} \mathcal{O}_{L_{0}}(-1) \oplus \Omega_{L_{0}}^{1} \oplus \mathcal{Q}_{L_{0}}^{\vee}
$$

hence

$$
H^{2}\left(L_{0}, \bigwedge^{2} N_{L_{0}, G}(-3)\right) \cong H^{0}\left(L_{0}, \bigwedge^{2} N_{L_{0}, G}^{\vee}\right)^{\vee}=0
$$

By Lemma 3.4 (ii) it follows that $H^{2}\left(L_{0}, N_{L_{0}, X}(-1)=0\right.$.
For part (ii), we note that the commutative diagram $\left({ }^{*}\right)$ of Lemma 3.4 induces a commutative diagram

The map γ_{1} is surjective, since X and L_{0} are projectively normal in \mathbb{P}^{9}. Corollary 3.3 shows that

$$
H^{1}\left(L_{0}, N_{L_{0}, G}(-1)\right)=H^{1}\left(L_{0}, \mathcal{Q}_{L_{0}}(-1) \bigoplus \mathcal{O}_{L_{0}} \bigoplus \mathcal{O}_{L_{0}}(-1)\right)=0
$$

hence the map γ_{2} is also surjective. Thus β is surjective.

Corollary 3.6. The map $\Phi: J\left(F_{X}\right) \rightarrow J^{3}(X)$ is nontrivial.
Proof: A diagram chase shows that $\tau=\Phi_{*}$ is nontrivial; hence Φ is nontrivial.

Let $\left\{X_{t}\right\}_{t \in \mathbb{P}^{1}}$ be a Lefschetz pencil in $\mathbb{P} H^{0}\left(\mathbb{P}^{9}, \mathcal{O}_{\mathbb{P}^{9}}(2)\right)$ with $X_{0}=X$. Let

be the relative incindence correspondence. Let $U^{\prime} \subset \mathbb{P}^{1}\left(\right.$ resp. $\left.U^{\prime \prime} \subset \mathbb{P}^{1}\right)$ be the subset over which \mathcal{X} (resp. \mathcal{F}) is smooth. Set $U=U^{\prime} \cap U^{\prime \prime}$.

Theorem 3.7. If $X \subset G(2,5)$ is a general quadratic line complex, the map $\Phi: J\left(F_{X}\right) \rightarrow J^{3}(X)$ is surjective.

Proof: Since the cylinder homomorphism is equivariant with respect to the action of $\pi_{1}(U, 0)$ ans the fundamental group $\pi_{1}\left(U^{\prime}, 0\right)$ acts transitively on $H^{5}(X, \mathbb{Q})($ cf. $\quad[\mathrm{V}$, Lecture 4$])$, the surjectivity of ψ and Φ follows from Corollary 3.6, because the images of $\pi_{1}(U, 0)$ and $\pi_{1}\left(U^{\prime}, 0\right)$ in Aut $H^{5}(X, \mathbb{Z})$ coincide.

Corollary 3.8 If $X_{s} u b s e t G(2,5)$ is a general quadratic line complex, the generalized Hodge conjecture $\operatorname{GHC}(X, 5,2)$ holds.

Proof: As the map $\Phi_{F_{X}}: F_{X} \rightarrow J^{3}(X)$ factors through the Abel-Jacobi $\operatorname{map} \psi_{X}: \mathrm{CH}_{\text {alg }}^{3}(X) \rightarrow J^{3}(X)$, Theorem 3.7 shows that $J_{\text {alg }}^{3}(X)=J^{3}(X)=$ $J_{\max }^{3}(X)$. Then apply [Mu, Lemma 4.3].

Remark 3.9 (i) The variety X is rational. This can be proved by projecting from one of the finitely many ${ }_{r} h o-$ planes contained in X; see e.g. [Rot, p. 96] or [Sem, 6.3]. A different proof is obtained by projecting from a σ-plane contained in X; this maps X birationally onto an irreducible quadric in \mathbb{P}^{6}.
(ii) For very general complete intersections of sufficiently high multidegree, the image of the Abel-Jacobi map is much smaller. The following theorem is a special case of a result for complete intersections in Grassmann varieties proved in [Na]:

Theorem 3.10 Let $X=V\left(d_{0}, \ldots, d_{r}\right)\left(d_{0} \geq \ldots \geq d_{r}, r \leq 2\right)$ be a smooth complete intersection of dimension $2 m-1(2 \leq m \leq 3)$ in $G=G(2,5)$; let $i: X \rightarrow G$ be the inclusion map. If X is very general, then the image of the rational Deligne cycle class map

$$
\operatorname{cl}_{\mathcal{D}, X}: \mathrm{CH}^{m}(X) \otimes \mathbb{Q} \rightarrow H_{\mathcal{D}}^{2 m}(X, \mathbb{Q}(m))
$$

coincides with the image of the composed map

$$
i^{*} \circ \operatorname{cl}_{\mathcal{D}, G}: \mathrm{CH}^{m}(G) \otimes \mathbb{Q} \rightarrow H_{\mathcal{D}}^{2 m}(X, \mathbb{Q}(m)),
$$

except possibly if
(i) $(m=3) X=V(2)$;
(ii) $(m=2) X=V(d, 1,1), d \geq 1$ or $X=V(d, 2,1), d \geq 2$.

The assertion about the image of the rational Deligne cycle class map in Theorem 3.10 implies that the image of the Abel-Jacobi map

$$
\psi_{X}: \mathrm{CH}_{\mathrm{hom}}^{m}(X) \rightarrow J^{m}(X)
$$

is, up to torsion, determined by the group $\operatorname{Hdg}_{\mathrm{pr}}^{m}(G)$ of primitive Hodge classes on $G(2,5)$. More precisely, we can show that up to torsion every normal function defind over a finite étale covering of the moduli space of complete intersections of multidegree $\left(d_{0}, \ldots, d_{r}\right)(r=6-2 m)$ is induced by an algebraic cycle $Z \in \mathrm{CH}^{m}(G)$ whose cycle class belongs to $\operatorname{Hdg}_{\mathrm{pr}}^{m}(G)$; for $m=3$ this means that such a normal function is a torsion section of the fiber space of intermediate Jacobians, as $\operatorname{Hdg}_{\mathrm{pr}}^{3}(G)=0$. Theorem 3.7 shows that Theorem 3.10 is sharp in case (i) ($m=3$); about case (ii) I do not know, except for low values of d that give rise to Fano or Calabi-Yau threefolds.

References

[AK] A. Altman and S. Kleiman, Foundations of the theory of Fano schemes, Comp. Math. 34 (1977), 3-47.
[Bar 1] F. Bardelli, A footnote to a paper by A. Grothendieck, Rend. Semin. Mat. Fis. Milano 57 (1987), 109-124.
[Ba 2] F. Bardelli, On Grothendieck's generalized Hodge conjecture for a family of threefolds with trivial canonical bundle, J. reine und angew. Math. 422 (1993), 165-200.
[Bott] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[C] A. Collino, The Abel-Jacobi isomorphism for cubic fivefolds, Pacific J. Math. 122 (1986), 43-56.
[Don] R. Donagi, On the geometry of Grassmannians, Duke Math. J. 44 (1977), 795-837.
[FH] W. Fulton and J. Harris, Representation theory. A first course, GTM 129, Springer-Verlag (1991).
[G] P. Griffiths, Periods of integrals on algebraic manifolds II, Am. J. Math. 90 (1968), 805-864.
[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley (1978).
[HAG] R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag (1977).
[Hu] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, GTM 9, Springer-Verlag (1972).
[HT] J. Harris and L.W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71-84.
[JPW] T. Józefiak, P. Pragacz and J. Weyman, Resolutions of determinantal varieties, in: Young tableaux and Schur functors in algebra and geometry, Torún, Poland 1980, Astérisque 87-88 (1981), 109-189.
[Ma] D.G. Markusevic, Numerical invariants of families of lines on some Fano varieties, Math. USSR Sbornik 44 (1983), 239-260.
[Mi] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann. 281 (1988), 325-332.
[Mu] J.P. Murre, Abel-Jacobi equivalence versus incidence equivalence for algebraic cycles of comdimension two, Topology 24 (1985), 361367.
[Na] J. Nagel, The image of the Abel-Jacobi map for complete intersections, Thesis, University of Leiden (1997).
[P] A. Papantanopoulou, Curves in Grassmann varieties, Nagoya Math. J. 66 (1977), 121-137.
[Re] M. Reid, Thesis, Cambridge (1972).
[Ros] M. Rossi, Hodge theory on some invariant threefolds of even degree, Indag. Math. 8 (1997), 267-279.
[Rot] L. Roth, Some properties of Grassmannians, Rend. di Mat. 5 (1951), 96-114.
[Seg] B. Segre, Studio dei complessi quadratici di rette di S_{4}, Atti Ist. Veneto 88 (1929), 595-649.
[Sem] J. Semple, On quadric representations of the lines of fourdimensional space, Proc. London Math. Soc. 30 (1930), 500-512.
[Sh] T. Shioda, What is known about the Hodge conjecture ?, in: Advanced Studies in Pure Math. 1 (1983), 55-68.
[St] J.H.M. Steenbrink, Some remarks on the Hodge conjecture, in: Hodge theory, San Cugat, Lecture Notes in Mathematics 1246 (1987), 165-175.
[SR] J.G. Semple and L. Roth, Introduction to Algebraic Geometry, Clarendon Press, Oxford (1985) (paperback reprint).
[T] A.N. Tyurin, On intersections of quadrics, Russian Math. Surveys 30 (1975), 51-105.
[V] C. Voisin, lectures at Sophia-Antipolis, 1991.
[Weh] J. Wehler, Deformation of varieties defined by sections in homogeneous vector bundles, Math. Ann. 268 (1984), 519-532.
[Wel] G. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Math. Center Tract 141, Amsterdam (1981).

