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1 Introduction

Let X be a smooth projective variety defined over C. The generalized
Hodge conjecture GHC(X, 2p− 1, p− 1) (as corrected by Grothendieck) as-
serts that every Q–sub Hodge structure V ⊂ H2p−1(X) of level one is sup-
ported in codimension p − 1, i.e., if V ⊂ F p−1H2p−1(X,C) ∩ H2p−1(X,Q)
then there should exist a subvariety Z ⊂ X of codimension p − 1 such
that V ⊂ kerH2p−1(X) → H2p−1(X \ Z). Let Jp

max(X) be the abelian
subvariety of the intermediate Jacobian Jp(X) that is associated to the
maximal sub Hodge structure of level one contained in H2p−1(X), and let
Jp

alg(X) = ψX(CHp
alg(X)) be the image of the Chow group of codimension p

cycles algebraically equivalent to zero under the Abel–Jacobi map. One has
Jp

alg(X) ⊂ Jp
max(X), and GHC(X, 2p− 1, p− 1) is true if and only if equality

holds; see [Mu, Lemma 4.3].

Miyaoka [Mi] has proved that every smooth threefold X of Kodaira di-
mension κ(X) = −∞ is uniruled; hence GHC(X, 3, 1) holds by a Remark of
Steenbrink [St, Prop (2.6)]. The conujecture GHC(X, 3, 1) has been verified
for Fermat hypersurfaces of degree ≤ 10 in P4 [Sh], for the very general mem-
ber of some families of threefolds with trivial canonical bundle (see [Bar 1]
and [Ba 2]) and for the very general member of some families of threefolds
of general type [Ros].
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Some higher–dimensional examples where GHC(X, 2p − 1, p − 1) holds
are (X general):

(i) X = V (2, 2) ⊂ P2p+1, X = V (2, 2, 2) ⊂ P2p+2; cf. [Re], [T]

(ii) (p = 3) X = V (3) ⊂ P6; see [C].

(iii) X = V (1, 1, 1) ⊂ G(2, p+ 3); see [Don].

(iv) (p = 4) X = V (1, 1) ⊂ G(3, 6); see [Don].

Among the Fano threefolds is tha quadratic complex of lines in P3, which
can be represented as an intersection of two quadrics in P5. The geometry
of this variety has been studied extensively; see e.g.[GH, Chapter 6]. In this
paper we consider the quadratic complex of lines in P4. This variety is a
Fano fivefold X of index 3 whose cohomology group H5(X) carries a Hodge
structure of level one with h2,3(X) = 10; its geometry has been studied by
the classical geometers B. Segre, J. Semple and L. Roth (cf. Remarks 2.7 and
3.9). We prove that GHC(X, 5, 2) holds if X = V (2) ⊂ G(2, 5) is general.

In Section 2 we show that for general X the Fano variety FX of two–
planes contained in X is a smooth curve, and we compute its numerical
invariants. The surjectivity of the Abel–Jacobi mapping associated to this
family of two–planes is shown in Section 3.

The main motivation for the consideration of this example was a general
result, which states that for very general complete intersections of sufficiently
high multidegree in Grassmann varieties the image of the Abel–Jacobi map
is, up to torsion, completely determined by the group of primitive Hodge
classes of the Grassmann variety; cf. Remark 3.9. This paper is a revised
version of the last chapter of my thesis. I would like to thank S. Müller–Stach,
J.P. Murre and C. Peters for helpful discussions.

2 The family of planes

Let V be a complex vector space of dimension 5, and let G = G(2, V ) be
the Grassmann variety of lines in P4 = P(V ). The variety G is embedded
as a smooth six–dimensional subvariety of degree 5 in P9 = P(∧2V ) by the
Plücker embedding. We denote the line in P4 corresponding to a point x ∈ G
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by ℓx. A quadratic line complex in G is the intersection of G with a quadric
Q ⊂ P9; it corresponds to a five–dimensional family of lines in P4.

Let p ∈ P(V ) be a point, and let σ(p) = {x ∈ G : p ∈ ℓx} be the
corresponding Schubert cycle. Since the tangent space TxG is spanned by

TxG ∩G = {z ∈ G : ℓz ∩ ℓx 6= ∅} = ∪p∈ℓx
σ(p),

the line spanned by two points x, y ∈ G is contained in G if and only if
ℓx ∩ ℓy 6= ∅. Hence G contains two families of 2–planes: the σ–planes (solid
point–stars) and the ρ–planes (ruled planes) (cf. [SR, X, §4]). Let h ⊂ P4

be a hyperplane, let p ∈ h be a point and let w2 ⊂ P4 be a 2–plane. The σ–
planes are the Schubert cycles σ(p, h) = {x ∈ G : p ∈ ℓx ⊂ h}; the ρ–planes
are the Schubert cycles σ(w2) = {x ∈ G : ℓx ⊂ w2}.

Let D(a1, . . . , ak, n) be the flag variety of type (a1, . . . , ak, n), i.e., the
variety that parametrizes flags of linear subspaces

Va1
⊂ Va2

⊂ . . . ⊂ Vak
⊂W,

where W is a complex vector space of dimension n and dim Vi = i. Instead
of D(a1, . . . , ak, n) we sometimes write D(a1, . . . , ak,W ).

The flag variety D = D(a1, . . . , ak, n) carries a sequence of universal sub-
bundles

Ha1
⊂ Ha2

⊂ . . .Hak
⊂ Hn = W ⊗C OD.

Let Hi,j = Hi/Hj (i > j) be the induced quotient bundles. The exact se-
quence 0 → Hj → Hi → Hi,j → 0 is obtained by pulling back the tautological
exact sequence on the Grassmann variety G(aj, ai) via the projection map

pi,j : D(a1, . . . , ak, n) → G(ai, aj).

The family of σ–planes on G is parametrized by the 7–dimensional flag
variety D = D(1, 4, 5); the family of ρ–planes on G is parametrized by the
6–dimensional flag variety D(3, 5). In the sequel we shall concentrate on the
family of σ–planes on G. The Plücker embedding i : G(2, 5) → P9 sends a
two–dimensional linear subspace V2 = 〈v1, v2〉 to the line in

∧2 V spanned
by v1 ∧ v2. A coordinate–free description of the Plücker embedding is

i : G(2, V ) −→ P(
∧2V )

(V2, V ) 7→ (
∧2V2,

∧2V ).
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Note that i is an embedding because the pair (W,
∧2 V ) ∈ i(G) uniquely

determines V2 by

V2 = {v ∈ V : v ∧ w = 0 for all w ∈W}.

Given a point (V1, V4, V ) ∈ D(1, 4, 5), we denote by V1

∧

V4 the subspace
of

∧2 V spanned by the vectors v ∧ w, where v ∈ V1 and w ∈ V4. The
Plücker embedding induces an embedding of the flag variety D(1, 4, 5) into
the Grassmann variety G′ = G(3, 10) of 2–planes in P9: choose a vector v
that spans V1 and a basis {v, v1, v2, v3} for V4, and map the point (V1, V4, V )
to the 3–dimensional linear subspace of

∧2 V spanned by {v∧v1, v∧v2, v∧v3}.
A coordinate–free description of this map is

j : D = D(1, 4, 5) → G(3, 10)

(V1, V4, V ) 7→ (V1

∧

V4,
∧2V ).

Note that we can recover the pair (V1, V4) from (W,
∧2 V ) ∈ im j by setting

V1 = {v ∈ V : v ∧ w = 0 for all w ∈W}

V4 = {v ∈ V : v ∧ w = 0 for some w ∈W}.

Let X = G∩Q be a quadratic line complex. The quadric Q corresponds
to a symmetric form Q ∈ S2(

∧2 V ∨). Let

0 → S3 →
∧2V ⊗OG′ → Q7 → 0

be the tautological exact sequence on G′ = G(3, 10). This sequence induces
a surjective map of vector bundles

S2(
∧2V ∨) ⊗OG′ → S2S∨

3

whose kernel we denote by K. Let s : S2(
∧2 V ∨) → H0(G′, S2S∨

3 ) be the
induced map on global sections. The Fano variety FX of σ–planes contained
in X is the zero scheme of the section s(Q). Let

0 → j∗K → S2(
∧2V ∨) ⊗OD → j∗S2S∨

3 → 0

be the exact sequence obtained by pullback to D. By composition of the
inclusion map P(j∗K) ⊂ P(S2

∧2 V ∨)×D and projection onto the first factor,
we obtain a map

P(j∗K) → P(S2
∧2V ∨)
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that exhibits the projective bundle P(j∗K) as the universal family of Fano
schemes of σ–planes over the family of quadratic line complexes (cf. [AK]).

To calculate the numerical invariants of the Fano scheme FX , we deter-
mine the Chern classes of j∗S∨

3 .

Lemma 2.1. j∗S3 = H1 ⊗H4,1.

Proof: The fiber of j∗S3 over a point x = (V1, V4, V ) is V1

∧

V4. Since the
natural map V1

∧

V4 → V1 ⊗ (V4/V1) is a canonical isomorphism, we obtain
the desired isomorphism of vector bundles. �

Remark 2.2. The previous result, whose original proof was simplified by a
suggestion of L. Manivel, gives a method to compute the numerical invariants
of the Fano schemes Fk(X) of k–planes contained in X. It simplifies the
method of computation used in [Ma].

The flag variety D = D(1, 4, 5) is the incidence correspondence in P4 ×
(P4)∨ with projections p : D → G(4, 5) = (P4)∨ and q : D → P4. Note that
j∗S3 = H1 ⊗ H4,1 = q∗(QP4(−1)). To describe the Chow ring CH∗(D), we
note that the projection p gives D the structure of a projective bundle P(S4)
over G(4, 5). Set x = c1(OD(1)) and h = c1(S

∨
4 ). The Chow ring of D is

CH∗(D) ∼= Z[x, h]/(x4 − hx3 + h2x2 − h3x+ h4, h5).

The first Chern classes of the universal bundles H1 = q∗OP4(−1) and H4 =
p∗S4 are c1(H1) = −x, c1(H4) = −h. Using the exact sequence

0 → H∨

4,1 → H∨

4 → H∨

1 → 0

we compute the Chern polynomial of H∨
4,1:

c(H∨

4,1) = (1 + ht+ h2t2 + h3t3 + h4t4)(1 + xt)−1

= 1 + (h− x)t+ (h2 − hx+ x2)t2 + (h3 − h2x+ hx2 − x3)t3.

Using Lemma 2.1, we find that the Chern classes of j∗S∨
3 are

c1(j
∗S∨

3 ) = 3c1(H
∨
1 ) + c1(H

∨
4,1) = h + 2x

c2(j
∗S∨

3 ) = 3c1(H
∨

1 )2 + 2c1(H
∨

1 )c1(H
∨

4,1) + c2(H
∨

4,1)

= 2x2 + hx+ h2

c3(j
∗S∨

3 ) = c1(H
∨

1 )3 + c1(H
∨

1 )2c1(H
∨

4,1) + c1(H
∨

1 )c2(H
∨

4,1) + c3(H
∨

4,1)

= hx2 + h3.
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The top Chern class of E = S2(j∗S∨
3 ) is

c6(E) = 8c1(j
∗S∨

3 )c2(j
∗S∨

3 )c3(j
∗S∨

3 ) − 8c3(j
∗S∨

3 )2

= 32hx5 + 24h2x4 + 56h3x3 + 24h4x2 + 24h5x

= 80h3x3.

Let π : X → PH0(P9,OP9(2)) be the universal family of quadratic line
complexes. Set Xt = π−1(t).

Lemma 2.3. If X ⊂ G is a general quadratic line complex, then FX is a
smooth curve of genus 161.

Proof: Consider the universal family of Fano schemes

p : P(j∗K) → P(S2∧2V ∨).

Note that p−1(t) = FXt
= D ∩ F2(Qt), where F2(Qt) is the Fano variety of

2–planes contained in the quadric Qt. For a general Q ∈ P(
∧2 S2V ∨) we shall

compute the intersection [D].[F2(Q)] ∈ CH20(G′), G′ ∼= G(3, 10). Because
[F2(Q)] = c6(S

2S∨
3 ), we have

[D].[F2(Q)] = j∗(j
∗[F2(Q)])

= j∗c6(E)

= j∗(80h3x3).

The projection formula shows that

j∗(80h3x3).c1(S
∨

3 ) = j∗(80h3x3.j∗c1(S
∨

3 ))

= j∗(80h3x3.(2x+ h))

= 240,

where we have used that h3x4 = h4x3. Hence [D].[F2(Q)] = j∗(80h3x3) 6= 0
and D∩F2(Q) 6= ∅ for general Q by Kleiman’s transversality theorem [HAG,
III, Thm. 10.8]. It follows that the map p is dominant, and hence surjective.
As P(j∗K) is a smooth and irreducible variety of dimension 55, the general
fiber FX is a smooth curve by generic smoothness [HAG, III, Cor. 10.7]. The
genus of FX , for general X, is computed using the exact sequences

0 → TFX
→ TD|FX

→ E|FX
→ 0 (1)

0 → Tv → TD → p∗TG(4,5) → 0 (2)

0 → OD → p∗S4 ⊗OD(1) → Tv → 0. (3)
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From the sequences (2) and (3) we obtain

c1(TD) = c1(Tv) + c1(p
∗TG(4,5)) = 4x− h+ 5h = 4x+ 4h.

Let jX : FX → D be the inclusion map. The exact sequence (1) shows that

(jX)∗c1(FX) = (c1(TD) − c1(S
2S∨

3 )).[FX ]

= (4x+ 4h− 4(2x+ h)).80h3x3

= −320h3x4 = −320h4x3,

hence 2 − 2g(FX) = −320. �

Since the vector bundle E is not ample, (cf. Remark 3.2), it is not clear
whether the curve FX is connected. To show that FX is connected, we
calculate the cohomology of the exterior powers of E∨ on the flag variety D.
We refer to [FH] and [Hu] for basic facts concerning representation theory.
Let G be a connected and simply connected complex Lie group, and let
P ⊂ G be a parabolic subgroup. The quotient space Y = G/P is a compact
homogeneous space.

Let R+ be the finite set of positive roots, and let T ⊂ G be a maximal
torus. Let B be the Borel subgroup generated by T and the negative root
groups. The Killing form induces an inner product (, ) on the character
group Λ = Hom(T,C∗). A weight λinΛ is called singular if (λ, α) = 0 for
some positive root α ∈ R+. If λ is not singular, it is called regular and we
define

index(λ) = #{α ∈ R+ : (λ, α) < 0}.

The cohomology groups of irreducible homogeneous vector bundles, i.e., vec-
tor bundles that are induced by irreducible representations of P , can be
computed by the following theorem of Bott (see [Bott, Theorem IV’]):

Theorem 2.4 (Bott) Let P be a parabolic subgroup of a semisimple com-
plex Lie group G. Let Wλ be the irreducible P–module with highest weight
λ and let Eλ = G ×P Wλ the corresponding homogeneous vector bundle on
Y = G/P . Let δ =

∑

i λi be the sum of the fundamental dominant weights,
and let W be the Weyl group.

(i) If λ+ δ is singular, then Hp(Y,Eλ) = 0 for all p ≥ 0.
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(ii) If λ+ δ is regular, then

Hp(Y,Eλ) =

{

0 if p 6= index(λ+ δ)
Γµ−δ if p = index(λ+ δ),

where µ is the unique dominant weight in the W–orbit of λ + δ and Γµ−δ

denotes the irreducible G–module with highest weight µ− δ.

Choose a basis {e1, . . . , e5} for V , and letW ⊂ V be the subspace spanned
by e2, e3 and e4. Let U ⊂ V be the one–dimensional subspace spanned by
e5. The flag variety D is a homogeneous space of the form D = SL(5,C)/P ,
where

P =











h1 0 0
h2 h3 0
h4 h5 h6



 : h1, h6 ∈ C∗, h3 ∈ GL(3,C), h1. det(h3).h6 = 1







.

Let ρ : P → W be the representation of P defined by ρ(h) = h3, and let
χ : P → U be the character χ(h) = h6. The homogeneous vector bundle
j∗S3 corresponds to the irreducible representation ρ⊗χ : P →W ⊗U . Since

S2(W ⊗ U) = S2W ⊗ U⊗2

∧mS2(W ⊗ U) =
∧m(S2W ) ⊗ U⊗2m,

it suffices to determine the highest weights of the representations
∧m(S2W )

for 1 ≤ m ≤ 6.

The representation ρ is induced by the standard representation of the
semisimple part Pss

∼= SL(3,C). The irreducible representation of SL(3,C)
with highest weight (β2, β3, β4) = β2e2 + β3e3 + β4e4 is denoted by Γβ2,β3,β4

.

Lemma 2.5. The decompositions of the exterior powers
∧k(S2W ) into ir-

reducible representations of SL(3,C) are

S2W ∼= Γ2,0,0

∧4(S2W ) ∼= Γ4,3,1
∧2(S2W ) ∼= Γ3,1,0

∧5(S2W ) ∼= Γ4,4,2
∧3(S2W ) ∼= Γ4,1,1 ⊕ Γ3,3,0

∧6(S2W ) ∼= Γ4,4,4.

Proof: This follows either from direct computation of the weights or by
applying Formula (2.6) in [JPW]. �
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Note that a weight λ = (β1, . . . , β5) of SL(5,C) is singular if and only
if there exist indices 1 ≤ i < j ≤ 5 such that βi = βj . The index of
λ = (β1, . . . , β5) is

index(λ) = #{α ∈ R+ : (λ, α) < 0}

= #{(i, j) : 1 ≤ i < j ≤ 5, βi < βj}.

Let δ = λ1+λ2+λ3+λ4 = 4e1+3e2 +2e3+e4 be the sum of the fundamental
dominant weights.

Using Lemma 2.5, we make a table of the highest weights λi associated to
the vector bundles

∧k E∨ and the indices of λi + δ (if the weight is singular,
we put a bar). Note that the highest weight of an irreducible representation
of P is dominant for the semisimple part Pss

∼= SL(3,C) of P . To emphasize
this we write β1e1 + . . .+ β5e5 = (β1; β2, β3, β4; β5).

λi index(λi + δ)
E∨ (0;2,0,0;2) -

∧2E∨ (0;3,1,0;4) -
∧3E∨ (0;4,1,1;6) 4

(0;3,3,0;6) -
∧4E∨ (0;4,3,1;8) 6
∧5E∨ (0;4,4,2;10) 6
∧6E∨ (0;4,4,4;12) 7

Lemma 2.6. If X ⊂ G is a general quadratic line complex, the curve FX is
connected.

Proof: In Lemma 2.3 we showed that FX is a smooth curve. Since FX is the
zero locus of the global section s(Q) ∈ H0(D,E), we have a Koszul resolution

0 →
∧6E∨ → · · · →

∧2E∨ → E∨ → OD → OFX
→ 0

for OFX
. Hence H0(FX ,OFX

) ∼= H0(D,OD) = C if Hp(D,
∧pE∨) = 0 for

1 ≤ p ≤ 6. This follows from Theorem 2.4, as the weights λi associated to
∧pE∨ are either singular or have index(λi + δ) 6= p. �
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Remark 2.7. The quadratic complex of lines in P4 has been studied from a
different point of view by B. Segre [Seg]. He considers the Fano variety F3(G)
of 3–planes on G(2, 5). Since every 3–plane contained in G is a Schubert
cycle σ(p) of lines through a point p ∈ P4, F3(G) is isomorphic to P4. A
point p ∈ P4 is called singular (with respect to X) if the corresponding 3–
plane σ(p) is tangent to the quadric Q ⊂ P9 that defines X. For a general
quadratic line complex X, Segre claims the following results:

1. The singular points are parametrized by a sextic hypersurface Σ ⊂ P4.

2. The points p ∈ P4 such that rank (Q|σ(p)) ≤ 2 (i.e., the restriction of Q
to σ(p) is a union of two planes) are parametrized by a smooth curve
C ⊂ Σ of degree 40 and genus 81.

To rephrase these results in modern language, we consider the map

g : P4 → G(4,
∧2V )

(V1, V5) 7→ (V1

∧

V5,
∧2V )

that embeds F3(G) ∼= P4 as a subvariety of the Grassmann variety G′ =
G(4, 10) of 3–planes in P9. Set F = g∗S4, and let QP4 be the universal
quotient bundle on P4. As before, one shows that F = H1⊗H5,1 = QP4(−1).
Pull back the natural map S2(

∧2 V ∨) ⊗ OG′ → S2(S∨
4 ) to obtain a map

s̃ : S2(
∧2 V ∨) ⊗ OP4 → S2F∨. The image s̃(Q) ∈ S2F∨ corresponds to a

symmetric bundle map f : F → F∨. Let

Dk(f) = {p ∈ P4 : corank f(p) ≥ k}

be the kth degeneracy locus of f . If (p, h) ∈ FX , then Q ∩ σ(p) contains
the 2–plane σ(p, h). Hence p is a singular point, and we have a well–defined
map τ : FX → C = D2(f) that sends (p, h) to p; the map τ is a double
covering, ramified over D3(f). It follows that if Q is general, the degeneracy
loci Σ = D1(f) and C = D2(f) have the expected codimension; using the
formulas in [HT], we find that deg Σ = 6 and degC = 40. I did not verify
that D3(f) = ∅; if this locus is empty, then σ is an unramified covering and
the Riemann–Hurwitz formula shows that the genus of C is 81, as claimed
by B. Segre.
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3 Infinitesimal Abel–Jacobi map

To study the infinitesimal Abel–Jacobi mapping associated to the family of
σ–planes on a general quadratic line complex X ⊂ G(2, 5), we need informa-
tion on the normal bundle NL,X of a σ–plane L ⊂ X. The normal bundle
NL,G has been determined in [P]; we introduce some notation, and then recall
the general result.

Let G(r + 1, V ) be the Grassmann variety of r–planes in P(V ), where V
is a complex vector space of dimension n + 1. We write Lx for the r–plane
corresponding to a point x ∈ G(r + 1, V ). Let h ⊂ P(V ) be a hyperplane
and p ∈ h a point. Consider the following types of Schubert cycles:

Z1 = σ(h) = {x ∈ G : Lx ⊂ h} ∼= G(r + 1, n)

Z2 = σ(p) = {x ∈ G : p ∈ Lx} ∼= G(r, n)

Z3 = σ(p, h) = {x ∈ G : p ∈ Lx ⊂ h} ∼= G(r, n− 1).

Let
0 → S → V ⊗OG → Q → 0 (4)

be the tautological exact sequence on G(r+1, n+1), and let Si (resp. Qi) be
the universal subbundle (resp. quotient bundle) on the Grassmann variety
Zi (i = 1, 2, 3).

Proposition 3.1 (cf. [P, Prop. 2.4]) The normal bundle of Z3 in G =
G(r + 1, n+ 1) is

NZ3,G
∼= S∨

3

⊕

Q3

⊕

OZ3
.

Proof: By comparison of the tautological exact sequence on Z1 and the
restriction of (4) to Z1 we find an exact sequence

0 → Q1 → QZ1
→ OZ1

→ 0

that splits, as H1(Z1,Q1) = 0 by the Bott vanishing theorem. Hence Q|Z1
=

Q1

⊕

OZ1
. By duality it follows that S|Z2

= S2

⊕

OZ2
. The other restrictions

are S|Z1
= S1, Q|Z2

= Q2. As Z3 is a Scubert cycle of type Z1 inside Z2, we
obtain

S|Z3
= S3

⊕

OZ3
, Q|Z3

= Q3

⊕

OZ3
.

11



Hence

TG|Z3
= (S∨ ⊗Q)|Z3

= S∨

3 ⊗Q3

⊕

S∨

3

⊕

Q3

⊕

OZ3

and the result follows. �

Remark 3.2 The bundles S∨ and Q are not ample (unless they have rank
one), as their restrictions to curves contained in Z3 have a quotient line
bundle of degree zero; see [P, Props. 2.2 and 2.3].

We return to the Grassmannian G = G(2, 5) of lines in P4.

Corollary 3.3 Let L0 ⊂ G = G(2, 5) be a σ–plane, and let QL0
be the uni-

versal quotient bundle on L0
∼= P2. The normal bundle of L0 in G is

NL0,G
∼= OL0

(1)
⊕

QL0

⊕

OL0
.

Let X ⊂ G be a general quadratic line complex. In Lemmas 2.3 and
2.6 we saw that the family of σ–planes on X is parametrized by a smooth,
irreducible curve FX of genus 161. Let

ΦFX
: FX → J3(X)

be the Abel–Jacobi mapping associated to this family of planes (note that
it is only well–defined up to translation). By the universal property of the
Jacobian J(FX) this map factorizes over a map

Φ : J(FX) → J3(X).

Let
I

q
−→ X





y

p

FX

be the incidence correspondence. The induced map

q∗◦p
∗ : H1(FX ,Z) → H5(X,Z)
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is called the cylinder homomorphism associated to the family FX . It sends
a 1–chain γ ⊂ FX to the 5–chain ∪x∈γLx swept out on X by the planes Lx,
x ∈ γ. Under Poincaré duality the cylinder homomorphism corresponds to a
homomorphism

ψZ : H1(FX ,Z) → H5(X,Z).

Its complexification ψC is a morphism of Hodge structures of type (2, 2) that
induces a map

ψ : H0(Ω1
FX

)∨ = H0,1(FX) → H2,3(X) = H2(Ω3
X)∨.

Choose a point 0 ∈ FX and let L0 ⊂ X be the corresponding σ–plane.
The following result is due to Griffiths and Welters. Note that the adjunction
formula shows that det(NL0,X) ∼= OL0

.

Lemma 3.4.

(i) The transpose of the infinitesimal Abel–Jacobi mapping is the compo-
sition of the maps

H2(X,Ω3
X) −→ H2(L0,Ω

3
X |L0

)

H2(L0,Ω
3
X |L0

) −→ H2(L0, KL0
⊗

∧2NL0,X)

H2(L0, KL0
⊗

∧2NL0,X)
∼

−→ H0(L0, NL0,X)∨

H0(L0, NL0,X)∨
∼

−→ T∨

FX ,0

(ii) The composed map

τ : H2(X,Ω3
X) → H2(L0, KL0

⊗
∧2NL0,X)

fits into a commutative diagram

H1(X, TX(−1))
β

−→ H1(L0, NL0,X(−1))
↓ ↓

H2(X,Ω3
X)

τ
−→ H2(L0,

∧2NL0,X(−3))




y





y

α

H2(X,
∧2TG ⊗OX(−3)) −→ H2(L0,

∧2NL0,G(−3))
↓ ↓
· · · −→ H2(L0, NL0,X(−1))
↓ ↓
· · · −→ 0

13



with exact columns.

Proof: For (i), see [G, Thm. 2.25]. Part (ii) is essentially due to Welters
[Wel]: take exterior powers in the two bottom rows of the commutative
diagram

(∗)

0 0




y





y

0 → TX ⊗OL0
→ TG ⊗OL0

→ NX,G ⊗OL0
→ 0





y





y
‖

0 → NL0,X → NL0,G → NX,G ⊗OL0
→ 0





y





y

0 0

and take the tensor product with KX⊗OL0
to obtain a commutative diagram

0 →
∧2TX ⊗OL0

→
∧2TG ⊗OL0

→ TX ⊗NX,G ⊗OL0
→ 0





y





y





y

0 →
∧2NL0,X →

∧2NL0,G → NL0,X ⊗NX,G → 0.

The desired commutative diagram is obtained from the associated long exact
sequences in cohomology by composing with the map on cohomology groups
induced by the restriction OX → OL0

. �

Lemma 3.5.

(i) kerα 6= 0.

(ii) β is surjective.

Proof: (i): The Hilbert scheme HilbP
X that parametrizes 2–planes in X is

the union of FX and a finite number of points (corresponding to the ρ–
planes contained in X). Hence the tangent space at 0 to FX is isomorphic
to H0(L0, NL0,X). As

h2(L0,
∧2NL0,X(−3)) = h0(L0, NL0,X) = 1

14



by Serre duality, Lemma 3.4 shows that

kerα 6= 0 ⇐⇒ H2(L0,
∧2NL0,G(−3)) = H2(L0, NL0,X(−1)).

We shall show that both cohomology groups vanish. By Corollary 3.3 we
have

∧2N∨

L0,G
∼=

∧2(Q∨

L0
⊕OL0

(−1) ⊕OL0
) ∼=

⊕2OL0
(−1) ⊕ Ω1

L0
⊕Q∨

L0
,

hence
H2(L0,

∧2NL0,G(−3)) ∼= H0(L0,
∧2N∨

L0,G)∨ = 0.

By Lemma 3.4 (ii) it follows that H2(L0, NL0,X(−1) = 0.

For part (ii), we note that the commutative diagram (*) of Lemma 3.4 induces
a commutative diagram

H0(X,OX(1))
γ1

−→ H0(L0,OL0
(1))

↓ ↓ γ2

H1(X, TX(−1))
β

−→ H1(L0, NL0,X(−1)).

The map γ1 is surjective, since X and L0 are projectively normal in P9.
Corollary 3.3 shows that

H1(L0, NL0,G(−1)) = H1(L0,QL0
(−1)

⊕

OL0

⊕

OL0
(−1)) = 0,

hence the map γ2 is also surjective. Thus β is surjective. �

Corollary 3.6. The map Φ : J(FX) → J3(X) is nontrivial.

Proof: A diagram chase shows that τ = Φ∗ is nontrivial; hence Φ is non-
trivial.

�

Let {Xt}t∈P1 be a Lefschetz pencil in PH0(P9,OP9(2)) with X0 = X. Let

I
q

−→ X




y

p

F

be the relative incindence correspondence. Let U ′ ⊂ P1 (resp. U ′′ ⊂ P1) be
the subset over which X (resp. F) is smooth. Set U = U ′ ∩ U ′′.

15



Theorem 3.7. If X ⊂ G(2, 5) is a general quadratic line complex, the map
Φ : J(FX) → J3(X) is surjective.

Proof: Since the cylinder homomorphism is equivariant with respect to the
action of π1(U, 0) ans the fundamental group π1(U

′, 0) acts transitively on
H5(X,Q) (cf. [V, Lecture 4]), the surjectivity of ψ and Φ follows from
Corollary 3.6, because the images of π1(U, 0) and π1(U

′, 0) in AutH5(X,Z)
coincide. �

Corollary 3.8 If XsubsetG(2, 5) is a general quadratic line complex, the
generalized Hodge conjecture GHC(X, 5, 2) holds.

Proof: As the map ΦFX
: FX → J3(X) factors through the Abel–Jacobi

map ψX : CH3
alg(X) → J3(X), Theorem 3.7 shows that J3

alg(X) = J3(X) =
J3

max(X). Then apply [Mu, Lemma 4.3]. �

Remark 3.9 (i) The variety X is rational. This can be proved by pro-
jecting from one of the finitely many rho–planes contained in X; see
e.g. [Rot, p. 96] or [Sem, 6.3]. A different proof is obtained by pro-
jecting from a σ–plane contained in X; this maps X birationally onto
an irreducible quadric in P6.

(ii) For very general complete intersections of sufficiently high multidegree,
the image of the Abel–Jacobi map is much smaller. The following theo-
rem is a special case of a result for complete intersections in Grassmann
varieties proved in [Na]:

Theorem 3.10 Let X = V (d0, . . . , dr) (d0 ≥ . . . ≥ dr, r ≤ 2) be a smooth
complete intersection of dimension 2m − 1 (2 ≤ m ≤ 3) in G = G(2, 5); let
i : X → G be the inclusion map. If X is very general, then the image of the
rational Deligne cycle class map

clD,X : CHm(X) ⊗ Q → H2m
D (X,Q(m))

coincides with the image of the composed map

i∗◦ clD,G : CHm(G) ⊗ Q → H2m
D (X,Q(m)),

except possibly if
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(i) (m = 3) X = V (2);

(ii) (m = 2) X = V (d, 1, 1), d ≥ 1 or X = V (d, 2, 1), d ≥ 2.

The assertion about the image of the rational Deligne cycle class map in
Theorem 3.10 implies that the image of the Abel–Jacobi map

ψX : CHm
hom(X) → Jm(X)

is, up to torsion, determined by the group Hdgm
pr(G) of primitive Hodge

classes on G(2, 5). More precisely, we can show that up to torsion every
normal function defind over a finite étale covering of the moduli space of
complete intersections of multidegree (d0, . . . , dr) (r = 6− 2m) is induced by
an algebraic cycle Z ∈ CHm(G) whose cycle class belongs to Hdgm

pr(G); for
m = 3 this means that such a normal function is a torsion section of the fiber
space of intermediate Jacobians, as Hdg3

pr(G) = 0. Theorem 3.7 shows that
Theorem 3.10 is sharp in case (i) (m = 3); about case (ii) I do not know,
except for low values of d that give rise to Fano or Calabi–Yau threefolds.
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