Effective bounds for Hodge-theoretic connectivity

J. Nagel

Abstract

We prove an effective version of Nori's connectivity theorem using Koszul cohomology computations. We apply this result to study the cycle class, Abel-Jacobi and regulator maps and the nonvanishing of certain Griffiths groups for complete intersections in projective spaces, abelian varieties and quadrics.

1 Introduction

Let X be a smooth projective variety of dimension n defined over \mathbb{C}. To study the nature of the Chow group $\mathrm{CH}^{p}(X)$ of algebraic cycles of codimension p on X one can use the cycle class map

$$
\mathrm{cl}_{X}^{p}: \mathrm{CH}^{p}(X) \rightarrow H^{2 p}(X, \mathbb{Z})
$$

and the Abel-Jacobi map

$$
\psi_{X}^{p}: \mathrm{CH}_{\mathrm{hom}}^{p}(X) \rightarrow J^{p}(X) .
$$

For $p \geq 2$ little is known about the images of these maps. If X is a very general smooth hypersurface of degree d in \mathbb{P}^{n+1}, the images of these maps (in the interesting cases $2 p=\operatorname{dim} X$ and $2 p-1=\operatorname{dim} X$) are described by the following two theorems:

Theorem 1. (Noether-Lefschetz) [D], [Sh, Thm. 2.1] If $X=V(d) \subset$ $\mathbb{P}^{2 m+1}$ is a very general smooth hypersurface of degree $d \geq 2+2 / m$ and dimension $2 m(m \geq 1)$, the image of cl_{X}^{m} is isomorphic to \mathbb{Z} and is generated by the class of a hyperplane section.
Theorem 2. (Green-Voisin) [G4] If $X=V(d) \subset \mathbb{P}^{2 m}$ is a very general smooth hypersurface of degree $d \geq 2+4 /(m-1)$ and dimension $2 m-1$ ($m \geq 2$), the image of ψ_{X}^{m} is contained in the torsion points of $J^{m}(X)$.
M.V. Nori [No] has obtained a remarkable generalisation of these results. His main result is a connectivity theorem for the universal family $X_{S} \subset Y_{S}$ of complete intersections of multidegree $\left(d_{0}, \ldots, d_{r}\right)$ and dimension n in a smooth projective variety Y : for every nonnegative integer $c \leq n$ there exists a natural number $N(c)$ such that for every smooth morphism $T \rightarrow S$ we have $H^{n+k}\left(Y_{T}, X_{T} ; \mathbb{Q}\right)=0$ for all $k \leq c$ if $\min \left(d_{0}, \ldots, d_{r}\right) \geq N(c)$.

For $Y=\mathbb{P}^{n+1}$, the asymptotic versions (i.e., without explicit degree bounds) of the theorems of Noether-Lefschetz and Green-Voisin follow from Nori's connectivity theorem: they correspond to the cases $c=1$ and $c=2$ (see Section 4 for details). Effective versions of Nori's theorem have been worked out in $[\mathrm{Pa}],[\mathrm{BM}]$ and $[\mathrm{R}]$. The degree bounds obtained in these papers do not suffice to recover Theorems 1 and 2 from Nori's connectivity theorem: the most precise result, due to Paranjape [Pa], yields the bound $d \geq 2 m+2$ in both cases.

In this paper we present a different proof of Nori's theorem, based on the original method of Green and Voisin. This method leads to more precise degree bounds; in particular, we find the (optimal) degree bounds of Theorems 1 and 2 . Our condition on the base change is stronger than the one in Nori's theorem: we assume that the induced family X_{T} is smooth over T, i.e., the smooth morphism $T \rightarrow S$ factors through a (necessarily smooth) morphism from T to $U=S \backslash \Delta$, the complement of the discriminant locus. This condition suffices to treat the known geometric applications of Nori's theorem.

In Section 2 we recall the basic ideas of Nori's proof and some technical results on spectral sequences. In Section 3 we prove an effective version of Nori's connectivity theorem using Koszul cohomology computations; our method is partly based on unpublished manuscripts of Green and MüllerStach [GM2]. (I was told that there exists also related unpublished work of Nori.) In the case $Y=\mathbb{P}^{N}$, similar degree bounds have been obtained by M. Asakura and S. Saito [AS]. In Section 4 we apply Nori's connectivity theorem to complete intersections inside projective spaces, quadrics and abelian varieties to obtain effective versions of results concerning the image of the cycle class, Abel-Jacobi and regulator maps and the nonvanishing of certain Griffiths groups. The results in this paper have been announced in [Na2].

Notation and conventions. We work over the field of complex numbers. Unless stated otherwise, cohomology is taken with coefficients in \mathbb{C}. For an abelian group G we write $G_{\mathbb{Q}}=G \otimes \mathbb{Q}$. If $f: C^{\bullet} \rightarrow D^{\bullet}$ is a map of complexes, the mapping cone $C^{\bullet}(f)$ fits into a short exact sequence

$$
0 \rightarrow D^{\bullet}[-1] \rightarrow C^{\bullet}(f) \rightarrow C^{\bullet} \rightarrow 0
$$

this differs from the usual definition by a shift of one.

2 Review of Nori's results

We recall the setup for Nori's theorem and the main ideas and technical ingredients of his proof. Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a smooth polarised variety defined over \mathbb{C}, and let X be a smooth complete intersection of dimension n in Y, defined by a global section of the vector bundle $E=\mathcal{O}_{Y}\left(d_{0}\right) \oplus \ldots \oplus \mathcal{O}_{Y}\left(d_{r}\right)$. Set $S=\mathbb{P} H^{0}(Y, E)$, let $X_{S} \subset Y_{S}=Y \times S$ be the universal family of complete intersections of multidegree $\left(d_{0}, \ldots, d_{r}\right)$ in Y and let $h: T \rightarrow S$ be a smooth morphism. By base change we obtain a family $X_{T}=X \times{ }_{S} T$ inside the trivial family $Y_{T}=Y \times T$. Let $i: X_{T} \rightarrow Y_{T}$ be the inclusion map, and let $p_{T}: Y_{T} \rightarrow T$ and $f=p_{T \circ} \circ: X_{T} \rightarrow T$ be the projections to T.

Theorem 2.1. (Nori) [No, Thm. 4] For every natural number $c \leq n$ there exists a natural number $N=N\left(Y, \mathcal{O}_{Y}(1), c\right)$ such that for every smooth morphism $h: T \rightarrow S$ we have $H^{n+k}\left(Y_{T}, X_{T} ; \mathbb{Q}\right)=0$ for all $k \leq c$ if $\min \left(d_{0}, \ldots, d_{r}\right) \geq N$.

Remark 2.2.

(i) By the Lefschetz hyperplane theorem, the restriction map $R^{q}\left(p_{T}\right)_{*} \mathbb{Z} \rightarrow$ $R^{q} f_{*} \mathbb{Z}$ is an isomorphism if $q<n$ and is injective if $q=n$. Using the Leray spectral sequence we find that $H^{k}\left(Y_{T}, X_{T} ; \mathbb{Z}\right)=0$ for all $k \leq n$. For $k>n$ there are examples showing that $H^{n+k}\left(Y_{T}, X_{T} ; \mathbb{Z}\right)$ may be nonzero even if $\min \left(d_{0}, \ldots, d_{r}\right) \gg 0$.
(ii) There is some freedom in the choice of the base S : the assertion of Theorem 2.1 remains valid if we choose $S=\prod_{i=0}^{r} \mathbb{P} H^{0}\left(Y, \mathcal{O}_{Y}\left(d_{i}\right)\right.$) (as in Nori's paper), $S=H^{0}(Y, E)$ or $S=\mathbb{P} H^{0}(Y, E) \backslash \Delta$, where Δ denotes the discriminant locus; see [No, Remark 3.3], [G5, Lecture 8] or Lemma 2.6.

The proof of Theorem 2.1 uses mixed Hodge theory. Let $Y_{T} \subset \bar{Y}_{T}$ and $X_{T} \subset \bar{X}_{T}$ be good compactifications with boundary divisors $D_{T}=\bar{Y}_{T} \backslash Y_{T}$ and $D_{T}^{\prime}=D_{T} \cap \bar{X}_{T}$, and let $\alpha: \Omega_{Y_{T}}^{\bullet} \longrightarrow i_{*} \Omega_{X_{T}}^{\bullet}$ and $\beta: \Omega_{\bar{Y}_{T}}^{\bullet}\left(\log D_{T}\right) \longrightarrow$ $i_{*} \Omega_{\bar{X}_{T}}\left(\log D_{T}^{\prime}\right)$ be the restriction maps. The mapping cones $C^{\bullet}(\alpha)$ and $C^{\bullet}(\beta)$ fit into a commutative diagram

The Hodge filtration on $H^{n+k}\left(Y_{T}, X_{T}\right) \cong H_{c}^{n+k}\left(Y_{T} \backslash X_{T}\right)$ is induced by the filtration bête on $C^{\bullet}(\beta)$ [DD, Lemme 2.2]:

$$
F^{p} H^{n+k}\left(Y_{T}, X_{T}\right)=\operatorname{im}\left(\mathbb{H}^{n+k}\left(\sigma_{\geq p} C^{\bullet}(\beta)\right) \rightarrow \mathbb{H}^{n+k}\left(C^{\bullet}(\beta)\right)\right)
$$

Nori deduced Theorem 2.1 from the following result:
Theorem 2.3. (Nori) [No, Thm. 3] For every natural number c there exists a natural number $N=N\left(Y, \mathcal{O}_{Y}(1), c\right)$ such that for every smooth morphism $h: T \rightarrow S$ we have $F^{k} H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$ if $\min \left(d_{0}, \ldots, d_{r}\right) \geq N$.

The cohomology group $H^{n+k}\left(Y_{T}, X_{T}\right)$ carries an increasing weight filtration W_{\bullet} that is strictly compatible with the weight filtrations on $H^{n+k}\left(Y_{T}\right)$ and $H^{n+k}\left(X_{T}\right)$. As Y_{T} and X_{T} are smooth quasi-projective varieties, it follows that

$$
\begin{equation*}
\operatorname{Gr}_{i}^{W} H^{n+k}\left(Y_{T}, X_{T}\right)=0 \quad \text { if } i<n+k-1 . \tag{1}
\end{equation*}
$$

To see how Theorem 2.1 follows from Theorem 2.3, assume that one of the Hodge numbers $h^{p, q}$ of $H^{n+k}\left(Y_{T}, X_{T}\right)$ is nonzero. By Theorem 2.3 we have $p \leq k-1$ and (by symmetry) $q \leq k-1$. Hence if $k \leq n$ then $p+q \leq 2 k-2<$ $n+k-1$, but this contradicts (1).

To prove Theorem 2.3, Nori introduced a filtration G^{\bullet} on $H^{n+k}\left(Y_{T}, X_{T}\right)$ that is coarser than the Hodge filtration F^{\bullet} but better suited for computations. The complex $C^{\bullet}(\alpha)$ is quasi-isomorphic to the complex $\Omega_{Y_{T}, X_{T}}^{\bullet}=$ $\operatorname{ker}\left(\Omega_{Y_{T}}^{\bullet} \rightarrow i_{*} \Omega_{X_{T}}^{\bullet}\right)$. Hence by Grothendieck's algebraic De Rham theorem [Gr] and the five lemma we have

$$
\mathbb{H}^{n+k}\left(C^{\bullet}(\alpha)\right) \cong H^{n+k}\left(Y_{T}, X_{T}\right)
$$

Define

$$
G^{p} H^{n+k}\left(Y_{T}, X_{T}\right)=\operatorname{im}\left(\mathbb{H}^{n+k}\left(\sigma_{\geq p} C^{\bullet}(\alpha)\right) \rightarrow \mathbb{H}^{n+k}\left(C^{\bullet}(\alpha)\right)\right) .
$$

The commutative diagram that relates $C^{\bullet}(\alpha)$ and $C^{\bullet}(\beta)$ shows that

$$
F^{p} H^{n+k}\left(Y_{T}, X_{T}\right) \subset G^{p} H^{n+k}\left(Y_{T}, X_{T}\right)
$$

To prove Theorem 2.1 it thus suffices to show that $G^{k} H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$. A closer look at Nori's weight argument reveals that it suffices to show that for all $k \leq c$ we have $G^{b_{k}} H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for some natural number $b_{k} \leq\left[\frac{n+k}{2}\right]$. Nori's choice is $b_{k}=k(k=1, \ldots, c)$. Our choice is

$$
\begin{equation*}
b_{k}=\left[\frac{n-c}{2}\right]+k \tag{2}
\end{equation*}
$$

In [Pa] K. Paranjape proved an effective version of Theorem 2.1 using Castelnuovo-Mumford regularity. Let m_{j} be the Castelnuovo-Mumford regularity of the vector bundle Ω_{Y}^{j}, i.e.,

$$
m_{j}=\min \left\{k \in \mathbb{Z} \mid H^{i}\left(Y, \Omega_{Y}^{j}(k-i)\right)=0 \text { for all } i>0\right\} .
$$

Following Paranjape we define $m_{Y}=\max \left\{m_{i}-i-1: 0 \leq i \leq \operatorname{dim} Y\right\} \in \mathbb{Z}_{\geq 0}$.
Theorem 2.4. (Paranjape) $[\mathrm{Pa},(2.3)]$ With the notation of Theorem 2.1, we have

$$
N\left(Y, \mathcal{O}_{Y}(1), c\right) \leq m_{Y}+n+c+1
$$

Definition 2.5. Let $g: T \rightarrow U=\mathbb{P} H^{0}(Y, E) \backslash \Delta$ be a smooth morphism, and let c be a natural number. We say that Nori's condition $\left(N_{c}\right)$ holds for the pair $\left(Y_{T}, X_{T}\right)$ if for all $k \leq c$

$$
R^{a}\left(p_{T}\right)_{*} \Omega_{Y_{T}, X_{T}}^{b}=0 \quad \text { for all pairs }(a, b) \quad \text { with } a+b \leq n+k, \quad b \geq b_{k}
$$

Lemma 2.6. Let $g: T \rightarrow U$ be a smooth morphism. Then
(i) If $\left(N_{c}\right)$ holds for $\left(Y_{U}, X_{U}\right)$, then $\left(N_{c}\right)$ holds for $\left(Y_{T}, X_{T}\right)$.
(ii) If g is surjective and $\left(N_{c}\right)$ holds for $\left(Y_{T}, X_{T}\right)$, then $\left(N_{c}\right)$ holds for $\left(Y_{U}, X_{U}\right)$.

Proof: See [No, Lemma 2.2]. Note that the replacement of Nori's choice $b_{k}=k$ by our choice of the numbers b_{k} does not affect the proof, as we have $b_{k-p}=b_{k}-p$ for all $p \leq k$.

Lemma 2.7. If $f: X_{T} \rightarrow T$ is smooth and if condition (N_{c}) holds for $\left(Y_{T}, X_{T}\right)$ then $H^{n+k}\left(Y_{T}, X_{T}, \mathbb{Q}\right)=0$ for all $k \leq c$.

Proof: It suffices to show that $G^{b_{k}} H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$, where the numbers b_{1}, \ldots, b_{c} are chosen as in (2). Consider the Grothendieck spectral sequence of composite functors

$$
E_{2}^{p, q}=H^{p}\left(T, \mathbb{R}^{q}\left(p_{T}\right)_{*} \Omega_{Y_{T}, X_{T}}^{\bullet}\right) \Rightarrow \mathbb{H}^{p+q}\left(\Omega_{Y_{T}, X_{T}}^{\bullet}\right) \cong H^{p+q}\left(Y_{T}, X_{T}\right)
$$

Using this spectral sequence for the filtered complex $\sigma_{\geq b_{k}} \Omega_{Y_{T}, X_{T}}^{\bullet}$, we find that $G^{b_{k}} H^{n+k}\left(Y_{T}, X_{T}\right)=0$ if $\mathbb{R}^{q}\left(p_{T}\right)_{*} \sigma_{\geq b_{k}} \Omega_{Y_{T}, X_{T}}^{\bullet}=0$ for all $q \leq n+$ k. Using the spectral sequence $E_{1}^{a, b} \Rightarrow \mathbb{R}^{a+b}\left(p_{T}\right)_{*} \sigma_{\geq b_{k}} \Omega_{Y_{T}, X_{T}}^{*}$ with $E_{1}^{a, b}=$ $R^{a}\left(p_{T}\right)_{*} \sigma_{\geq b_{k}} \Omega_{Y_{T}, X_{T}}^{b}$ we find that $\mathbb{R}^{q}\left(p_{T}\right)_{*} \sigma_{\geq b_{k}} \Omega_{Y_{T}, X_{T}}^{\bullet}=0$ for all $q \leq n+k$ and all $k \leq c$ if condition $\left(N_{c}\right)$ holds.

Let $i_{t}: Y \rightarrow Y_{T}$ be the inclusion map defined by $i_{t}(y)=(y, t)$.
Lemma 2.8. If $f: X_{T} \rightarrow T$ is smooth, there exists for every $t \in T$ a spectral sequence

$$
E_{1}^{p, q}(b)=\Omega_{T, t}^{p} \otimes H^{p+q}\left(Y, \Omega_{Y, X_{t}}^{b-p}\right) \Rightarrow H^{p+q}\left(Y, i_{t}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right)
$$

Proof: As $f: X_{T} \rightarrow T$ is smooth, we have an exact sequence

$$
0 \rightarrow f^{*} \Omega_{T}^{1} \rightarrow \Omega_{X_{T}}^{1} \rightarrow \Omega_{X_{T} / T}^{1} \rightarrow 0
$$

that induces an increasing filtration L^{\bullet}, the Leray filtration, on $\Omega_{X_{T}}^{\bullet}$:

$$
L^{p} \Omega_{X_{T}}^{\bullet}=\operatorname{im}\left(f^{*} \Omega_{T}^{p} \otimes \Omega_{X_{T}}^{\bullet}[-p] \rightarrow \Omega_{X_{T}}^{\bullet}\right)
$$

The split exact sequence

$$
0 \rightarrow f^{*} \Omega_{T}^{1} \rightarrow \Omega_{Y_{T}}^{1} \rightarrow p_{T}^{*} \Omega_{T}^{1} \rightarrow 0
$$

induces a filtration L^{\bullet} on $\Omega_{Y_{T}}^{\bullet}$. Define

$$
\Omega_{\left(Y_{T}, X_{T}\right) / T}^{\bullet}=\operatorname{ker}\left(\Omega_{Y_{T} / T}^{\bullet} \rightarrow i_{*} \Omega_{X_{T} / T}^{\bullet}\right)
$$

We have an induced filtration

$$
L^{p} \Omega_{Y_{T}, X_{T}}^{\bullet}=\operatorname{ker}\left(L^{p} \Omega_{Y_{T}}^{\bullet} \rightarrow L^{p} i_{*} \Omega_{X_{T}}^{\bullet}\right)
$$

with graded pieces

$$
\operatorname{Gr}_{L}^{p} \Omega_{Y_{T}, X_{T}}^{\bullet} \cong f^{*} \Omega_{T}^{p} \otimes \Omega_{\left(Y_{T}, X_{T}\right) / T}^{\bullet}[-p] .
$$

The induced filtration on $i_{t}^{*} \Omega_{Y_{T}, X_{T}}$ defines a spectral sequence

$$
E_{1}^{p, q}(b)=H^{p+q}\left(Y, \operatorname{Gr}_{L}^{p} i_{t}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right) \Rightarrow H^{p+q}\left(Y, i_{t}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right)
$$

with $E_{1}^{p, q}(b) \cong \Omega_{T, t}^{p} \otimes H^{p+q}\left(Y, \Omega_{Y, X_{t}}^{b-p}\right)$.

Remark 2.9. In a similar way one can construct spectral sequences

$$
\begin{aligned}
E_{1}^{p, q}\left(X_{t}, b\right) & =\Omega_{T, t}^{p} \otimes H^{p+q}\left(X_{t}, \Omega_{X_{t}}^{b-p}\right) \Rightarrow H^{p+q}\left(X_{t}, \Omega_{X_{T}}^{b} \otimes \mathcal{O}_{X_{t}}\right) \\
E_{1}^{p, q}(Y, b) & =\Omega_{T, t}^{p} \otimes H^{p+q}\left(Y, \Omega_{Y}^{b-p}\right) \Rightarrow H^{p+q}\left(Y, \Omega_{Y_{T}}^{b} \otimes \mathcal{O}_{Y}\right)
\end{aligned}
$$

Let $j: X_{t} \rightarrow Y$ be the inclusion map. Define

$$
\begin{aligned}
E_{1}^{\bullet, q}\left(X_{t}, b\right)_{\mathrm{var}} & =\operatorname{coker}\left(j^{*}: E_{1}^{\bullet, q}(Y, b) \rightarrow E_{1}^{\bullet, q}\left(X_{t}, b\right)\right) \\
E_{1}^{\bullet, q}(Y, b)_{0} & =\operatorname{ker}\left(j^{*}: E_{1}^{\bullet, q}(Y, b) \rightarrow E_{1}^{\bullet, q}\left(X_{t}, b\right)\right)
\end{aligned}
$$

The map d_{1} in the spectral sequence $E_{1}^{\bullet, q}\left(X_{t}, b\right)$ can be identified with the differential of the period map and is given by cup product with the KodairaSpencer class, followed by contraction; cf. [G5, Lecture 3]. The complex $E_{1}^{\bullet, q}(b)$ fits into a short exact sequence of complexes

$$
0 \rightarrow E_{1}^{\bullet, q-1}\left(X_{t}, b\right)_{\mathrm{var}} \rightarrow E_{1}^{\bullet, q}(b) \rightarrow E_{1}^{\bullet, q}(Y, b)_{0} \rightarrow 0
$$

By the Lefschetz hyperplane theorem we have $E_{1}^{p, q}(b)=0 \quad$ if $b+q \leq n$. As we shall see in Section 3 the term $E_{1}^{p, q}(b)$ (or rather its dual) can be expressed using Jacobi rings if $b+q=n+1$ and if the degrees d_{i} are sufficiently large. If $b+q>n+1$, say $b+q=n+1+e$, it follows from the Lefschetz hyperplane theorem and the hard Lefschetz theorem that we have an isomorphism

$$
E_{1}^{p, q}(b) \cong E_{1}^{p, q}(b)_{0} \cong \Omega_{T, t}^{p} \otimes H_{\mathrm{pr}}^{b-p-e, p+q-e}(Y)
$$

The only nonzero differentials in the spectral sequence $E_{r}^{p, q}(b)$ are the maps $d_{r}: E_{r}^{p-r, q+r-1}(b) \rightarrow E_{r}^{p, q}(b)$ with $b+q=n+1$. If Y has no primitive cohomology, the spectral sequence $E_{r}^{p, q}(b)$ degenerates at E_{2}. In general we have $E_{\infty}^{p, q}(b)=E_{k+1}^{p, q}(b)$ if $p+q+b \leq n+k$. If $E_{\infty}^{p, q}(b)=0$ there exists an increasing filtration on $E_{2}^{p, q}(b)(b+q=n+1)$ whose graded pieces are controlled by the primitive cohomology of Y. A proof of this statement was announced in [Mul1, Thm. 1.7] but a proof never appeared.

Lemma 2.10. Let $\Delta^{\prime} \subset H^{0}(Y, E)$ be the discriminant locus. If $E_{\infty}^{p, q}(b)=0$ for all $t \in U^{\prime}=H^{0}(Y, E) \backslash \Delta^{\prime}$, for all $k \leq c$ and for all (p, q, b) such that $p+q+b \leq n+k, b \geq b_{k}$, then for every smooth morphism $g: T \rightarrow U=$ $\mathbb{P} H^{0}(Y, E) \backslash \Delta$ we have $H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$.

Proof: If $H^{p+q}\left(Y, i_{t}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right)=0$ for all $t \in T$ then $R^{p+q}\left(p_{T}\right)_{*} \Omega_{Y_{T}, X_{T}}^{b}=0$ by semicontinuity; cf. [Mum, Cor. 2, p. 50]. Hence, if the conditions of the Lemma are satisfied then Nori's condition $\left(N_{c}\right)$ holds for the pair $\left(Y_{U^{\prime}}, X_{U^{\prime}}\right)$. The composition of the inclusion map $U^{\prime} \rightarrow H^{0}(Y, E) \backslash\{0\}$ and the projection to $\mathbb{P} H^{0}(Y, E)$ is a smooth morphism $h: U^{\prime} \rightarrow \mathbb{P} H^{0}(Y, E)$ whose image is U. By Lemma 2.6 (ii) it follows that condition $\left(N_{c}\right)$ holds for $\left(Y_{U}, X_{U}\right)$, hence condition $\left(N_{c}\right)$ holds for $\left(Y_{T}, X_{T}\right)$ by Lemma 2.6 (i) and the assertion follows by Lemma 2.7.

Remark 2.11. We have stated Nori's condition $\left(N_{c}\right)$ and Lemma 2.6 using the pair $\left(Y_{U}, X_{U}\right), U=\mathbb{P} H^{0}(Y, E) \backslash \Delta$. The conclusion of Lemma 2.6 remains valid if we replace the pair $\left(Y_{U}, X_{U}\right)$ by a pair (A, B) of smooth varieties over \mathbb{C} such that $i: B \rightarrow A$ is a closed immersion and A admits a morphism $p: A \rightarrow U$; see [No, Section 2]. If one assumes in addition that the morphism p is smooth, all the results in this section that have been stated for the pair $\left(Y_{U}, X_{U}\right)$ remain valid for the pair (A, B).

Remark 2.12. In his paper, Nori works with the projection map $p_{Y} \circ i$: $X_{T} \rightarrow Y$, which is a smooth morphism for every base change $T \rightarrow S$. The use of the other projection map $f=p_{T} \circ i: X_{T} \rightarrow T$ allows us to make the connection with the the theory of infinitesimal variations of Hodge structure and the work of Green and Voisin, at the cost of a slightly stronger assumption on the base change (it has to factor through the complement U of the discriminant locus). See also [No, Remark 3.10].

In the case $c=2$ and $Y=\mathbb{P}^{n+r+1}$ our method for the proof of Nori's theorem is essentially the method of Green and Voisin, phrased in terms of the cohomology of the universal family. To see this, take $n=2 m-1$ and note that by the Lefschetz hyperplane theorem we have $E_{1}^{p, q}(b)=0$ for all $b+q \leq 2 m-1$. By Lemma 2.10 we have $H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq 2$ if
(i) $E_{\infty}^{0,2 m-b}(b)=E_{2}^{0,2 m-b}(b)=0$ for all $b \geq m-1$
(ii) $E_{\infty}^{1,2 m-b}(b)=E_{2}^{1,2 m-b}(b)=0$ for all $b \geq m$
(iii) $E_{\infty}^{0,2 m+1-b}(b)=E_{3}^{0,2 m+1-b}(b)=0$ for all $b \geq m$.

Set $\mathbb{V}=R^{2 m-1} f_{*} \mathbb{Z}, \mathcal{V}=\mathbb{V} \otimes_{\mathbb{Z}} \mathcal{O}_{T}, \mathcal{F}^{p}=\mathbb{R}^{2 m-1} f_{*} \sigma_{\geq p} \Omega_{X_{T}}^{\bullet}$ and $\mathcal{J}^{m}=$ $\mathcal{V} / \mathcal{F}^{m}+\mathbb{V}$. The Gauss-Manin connection ∇ induces a map $\bar{\nabla}: \mathcal{J}^{m} \rightarrow$ $\mathcal{V} / \mathcal{F}^{m-1} \otimes \Omega_{T}^{1}$, whose kernel is denoted by \mathcal{J}_{h}^{m}; the global sections of this sheaf are called horizontal normal functions. If the conditions (i) and (ii) are satisfied, the first two cohomology sheaves of the complex of sheaves

$$
F^{m}\left(\Omega_{T}^{\bullet} \otimes \mathbb{V}\right): 0 \rightarrow \mathcal{F}^{m} \rightarrow \Omega_{T}^{1} \otimes \mathcal{F}^{m-1} \rightarrow \Omega_{T}^{2} \otimes \mathcal{F}^{m-2} \rightarrow \ldots
$$

are zero. The vanishing of $\mathcal{H}^{1}\left(T, F^{m}\left(\Omega_{T}^{\bullet} \otimes \mathbb{V}\right)\right)$ shows that the infinitesimal invariant $\delta \nu$ associated to $\nu \in H^{0}\left(T, \mathcal{J}_{h}^{m}\right)$ vanishes, hence ν has locally constant liftings. If in addition $\mathcal{H}^{0}\left(T, F^{m}\left(\Omega_{T}^{\bullet} \otimes \mathbb{V}\right)\right)$ vanishes, these locally constant sections are unique up to sections of the local system \mathbb{V} and ν is a torsion section of \mathcal{J}_{h}^{m}; see [V1, Prop. 2.6]. Condition (iii) is vacuous if $Y=\mathbb{P}^{2 m+r}$, because $E_{1}^{0,2 m+1-b}(b) \subset H^{b, 2 m+1-b}\left(\mathbb{P}^{2 m+r}\right)=0$.

3 Proof of Nori's theorem

In this section we shall prove an effective version of Theorem 2.1 using Koszul cohomology computations. By Lemma 2.10 it suffices to show that certain E_{∞} terms of the spectral sequence $E_{r}^{p, q}(b)$ introduced in Lemma 2.8 are zero for the base $T=U^{\prime}=H^{0}(Y, E) \backslash \Delta^{\prime}$. To this end, we shall identify the dual of the spectral sequence $E_{r}^{p, q}(b)$ with another spectral sequence ${ }^{\prime} E_{r}^{p, q}(b)$. The spectral sequence ${ }^{\prime} E_{r}^{p, q}(b)$ is one of the two spectral sequences associated to a double complex $B^{\bullet \bullet \bullet}(b)$. Using the second spectral sequence " $E_{r}^{p, q}(b)$ associated to this double complex, whose E_{1} terms are Koszul cohomology groups, we prove the vanishing of the relevant E_{∞} terms.

We first consider the case of hypersurfaces. Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a smooth polarised variety of dimension $n+1$. Set $L=\mathcal{O}_{Y}\left(d_{0}\right), V=H^{0}(Y, L)$. Let $X \in|L|$ be a smooth divisor. Set $S=\mathbb{P} H^{0}(Y, L)$ and let $\Delta \subset S$ and $\Delta^{\prime} \subset V$ be the discriminant loci. Let $X_{S} \subset Y \times S$ be the universal family and let τ be the tautological section of the line bundle $\mathcal{L}_{S}=p_{Y}^{*} L \otimes p_{S}^{*} \mathcal{O}_{S}(1)$. Throughout the first part of this section we shall work with the base

$$
T=U^{\prime}=H^{0}(Y, L) \backslash \Delta^{\prime}
$$

Recall from the proof of Lemma 2.10 that there exists a smooth morphism $h: T \rightarrow S$. Set $\mathcal{L}=(\mathrm{id} \times h)^{*} \mathcal{L}_{S}=p_{Y}^{*} L \otimes p_{T}^{*} \mathcal{O}_{T}(1)$. As T is a Zariski open subset of an affine space, the line bundle $\mathcal{O}_{T}(1)$ has a nowhere vanishing section. Hence $\mathcal{O}_{T}(1) \cong \mathcal{O}_{T}$ and $\mathcal{L} \cong p_{Y}^{*} L$. The tangent bundle to T is the trivial bundle $V \otimes \mathcal{O}_{T}$. Set $\sigma=(\operatorname{id} \times h)^{*} \tau \in H^{0}\left(Y_{T}, \mathcal{L}\right)$. We have $X_{S}=V(\tau) \subset Y_{S}$ and $X_{T}=V(\sigma) \subset Y_{T}$. Choose a base point $s_{0} \in T$ and define a map $i_{0}: Y \rightarrow Y_{T}$ by $i_{0}(y)=\left(y, s_{0}\right)$.

Let $P^{1}(L)$ be the first jet bundle of L. A morphism $f: Y \rightarrow Z$ of smooth projective varieties induces a map $f^{*} P^{1}(L) \rightarrow P^{1}\left(f^{*} L\right)$ that fits into a commutative diagram (see [K] or [Pe, Prop. 3.4])

$$
\begin{array}{rcccccc}
0 & \rightarrow f^{*} \Omega_{Y}^{1} \otimes f^{*} L & \rightarrow f^{*} P^{1}(L) & \rightarrow f^{*} L & \rightarrow 0 \\
\downarrow & & & \\
\downarrow & \downarrow & & & \\
0 & \rightarrow \Omega_{Z}^{1} \otimes f^{*} L & \rightarrow P^{1}\left(f^{*} L\right) & \rightarrow & f^{*} L & \rightarrow 0 .
\end{array}
$$

Let $\Sigma_{Y, L}=P^{1}(L)^{\vee} \otimes L$ be the bundle of first order differential operators on sections of L. It fits into an exact sequence of sheaves of \mathcal{O}_{Y}-modules

$$
0 \rightarrow \mathcal{O}_{Y} \rightarrow \Sigma_{Y, L} \rightarrow T_{Y} \rightarrow 0
$$

with extension class $e=2 \pi i . c_{1}(L)$ [A, pp. 195-196]. A morphism $f: Y \rightarrow Z$ induces a map $\Sigma_{X, f^{*} L} \rightarrow f^{*} \Sigma_{Y, L}$.

Lemma 3.1. There exists a split exact sequence

$$
\begin{equation*}
0 \rightarrow \Sigma_{Y, L} \rightarrow i_{0}^{*} \Sigma_{Y_{T}, \mathcal{L}} \rightarrow V \otimes \mathcal{O}_{Y} \rightarrow 0 \tag{3}
\end{equation*}
$$

Proof: The morphism $i_{0}: Y \rightarrow Y_{T}$ induces a homomorphism of vector bundles $f_{1}: \Sigma_{Y, L}=\Sigma_{Y, i_{0}^{*} \mathcal{L}} \rightarrow i_{0}^{*} \Sigma_{Y_{T}, \mathcal{L}}$ that fits into a commutative diagram

The projection $p_{Y}: Y_{T} \rightarrow Y$ induces homomorphisms $\Sigma_{Y_{T}, \mathcal{L}}=\Sigma_{Y_{T}, p_{Y}^{*} L} \rightarrow$ $p_{Y}^{*} \Sigma_{Y, L}$ and $f_{2}: i_{0}^{*} \Sigma_{Y_{T}, \mathcal{L}} \rightarrow i_{0}^{*} p_{Y}^{*} \Sigma_{Y, L}=\Sigma_{Y, L}$. By functoriality, the composed map $f_{2} \circ f_{1}: \Sigma_{Y, L} \rightarrow \Sigma_{Y, L}$ is the identity, as it is induced by the map $\mathrm{id}_{Y}=$ $p_{Y} \circ i_{0}: Y \rightarrow Y$. Hence f_{2} defines a splitting of the exact sequence.

Remark 3.2. There is a geometric interpretation of Lemma 3.1. The vector space $H^{1}\left(Y, \Sigma_{Y, L}\right)$ parametrises infinitesimal deformations of the pair (Y, L) (cf. [SSU, Prop. (6.2)], [W, §1]). If $(\mathcal{Y}, \mathcal{L}, g, B)$ is a deformation of $\left(\mathcal{Y}_{0}, \mathcal{L}_{0}\right) \cong$ (Y, L) such that $g: \mathcal{Y} \rightarrow B$ is smooth, there exists a Kodaira-Spencer map

$$
\rho_{0}: T_{0} B \rightarrow H^{1}\left(Y_{0}, \Sigma_{Y, L}\right)
$$

that is induced by the middle column of the commutative diagram

The Kodaira-Spencer map is given by cup product with the extension class of the middle column. If $\mathcal{Y} \cong Y \times S$ and $\mathcal{L} \cong p_{Y}^{*} L$ then the deformation is trivial. In this case the exact sequence in the middle column splits and the Kodaira-Spencer map is identically zero.

We recall some results about Koszul complexes. For every pair of natural numbers (p, q) there exists a contraction (or internal product) map

$$
\begin{aligned}
\bigwedge^{p+q} V \otimes \bigwedge^{q} V^{\vee} & \rightarrow \bigwedge^{p} V \\
x \otimes y & \rightarrow\langle y, x\rangle
\end{aligned}
$$

that coincides with the duality pairing for $p=0$. The map $\bigwedge^{p+q} V \rightarrow \bigwedge^{p} V$ given by contraction with $y \in \bigwedge^{q} V^{\vee}$ is the adjoint of the map $\bigwedge^{p} V^{\vee} \rightarrow$ $\bigwedge^{p+q} V^{\vee}$ given by wedge product with y, i.e., we have the relation

$$
\langle z,\langle y, x\rangle\rangle=\langle z \wedge y, x\rangle
$$

for all $x \in \bigwedge^{p+q} V, z \in \bigwedge^{p} V^{\vee}$ (cf. [FH, Appendix B]). Let $R=\operatorname{Sym} V$ be the symmetric algebra on V. Choose bases $\left\{v_{1}, \ldots, v_{N}\right\}$ of $V,\left\{w_{1}, \ldots, w_{N}\right\}$ of V^{\vee} that are dual to each other. The differentials of the Koszul complex

$$
\bigwedge^{N} V \otimes R(-N) \rightarrow \ldots \rightarrow V \otimes R(-1) \rightarrow R
$$

are the maps $\delta_{k+1}: \bigwedge^{k+1} V \otimes R(-k-1) \rightarrow \bigwedge^{k} V \otimes R(-k)$ defined by

$$
\delta_{k+1}\left(v_{i_{1}} \wedge \ldots \wedge v_{i_{k+1}} \otimes y\right)=\sum_{j}(-1)^{j-1} v_{i_{1}} \wedge \ldots \widehat{v_{j}} \wedge \ldots \wedge v_{i_{k+1}} \otimes v_{i_{j}} . y
$$

These maps are given by contraction with the element $\omega=\sum_{i} v_{i} \otimes w_{i} \in$ $V \otimes V^{\vee}$. If we sheafify the Koszul complex and restrict it to $Y \subset \mathbb{P}\left(V^{\vee}\right)$ we obtain a complex

$$
\mathcal{K}^{\bullet}=\left(\bigwedge^{N} V \otimes L^{-N} \rightarrow \ldots \rightarrow V \otimes L^{-1} \rightarrow \mathcal{O}_{Y}\right)
$$

that is concentrated in degrees $-N, \ldots,-1,0$.
Let \mathcal{F} be a coherent sheaf of \mathcal{O}_{Y}-modules.
Definition 3.3. (Green) [G2] The Koszul cohomology group $\mathcal{K}_{p, q}(\mathcal{F}, L)=$ $H^{-p}\left(\Gamma\left(Y, \mathcal{K} \bullet \otimes \mathcal{F} \otimes L^{p+q}\right)\right)$ is the cohomology group at the middle term of the complex

$$
\bigwedge^{p+1} V \otimes H^{0}\left(\mathcal{F} \otimes L^{q-1}\right) \rightarrow \bigwedge^{p} V \otimes H^{0}\left(\mathcal{F} \otimes L^{q}\right) \rightarrow \bigwedge^{p-1} V \otimes H^{0}\left(\mathcal{F} \otimes L^{q+1}\right)
$$

Let M_{L} be the kernel of the surjective evaluation map $e_{L}: V \otimes \mathcal{O}_{Y} \rightarrow L$. The complex $\mathcal{K} \bullet \otimes L^{N}$ can be obtained by taking the $N^{\text {th }}$ exterior power of the short exact sequence of vector bundles

$$
\begin{equation*}
0 \rightarrow M_{L} \rightarrow V \otimes_{\mathbb{C}} \mathcal{O}_{Y} \rightarrow L \rightarrow 0 \tag{4}
\end{equation*}
$$

The long exact sequence

$$
\begin{aligned}
0 \rightarrow \bigwedge^{p+1} M_{L} \otimes \mathcal{F} \otimes L^{q-1} & \rightarrow \bigwedge^{p+1} V \otimes \mathcal{F} \otimes L^{q-1} \rightarrow \bigwedge^{p} V \otimes \mathcal{F} \otimes L^{q} \rightarrow \\
& \rightarrow \bigwedge^{p-1} V \otimes \mathcal{F} \otimes L^{q+1} \rightarrow \ldots \rightarrow \mathcal{F} \otimes L^{p+q} \rightarrow 0
\end{aligned}
$$

obtained from (4) by taking exterior powers and twisting by $\mathcal{F} \otimes L^{q-1}$ shows that (cf. [G2])

$$
\begin{equation*}
\mathcal{K}_{p, q}(\mathcal{F}, L)=0 \text { if } H^{1}\left(Y, \bigwedge^{p+1} M_{L} \otimes \mathcal{F} \otimes L^{q-1}\right)=0 \tag{5}
\end{equation*}
$$

By Lemma 2.8 there exists a spectral sequence

$$
E_{1}^{p, q}(b)=H^{p+q}\left(Y, \operatorname{Gr}_{L}^{p} i_{0}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right) \Rightarrow H^{p+q}\left(Y, i_{0}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right)
$$

To prove Nori's theorem it suffices to verify the conditions of Lemma 2.10. By the Lefschetz hyperplane theorem $E_{1}^{p, q}(b)=0$ if $b+q \leq n$, so we may assume that $b+q \geq n+1$. Set $N=\operatorname{dim} V$. Then $K_{T} \cong \bigwedge^{N} V^{\vee} \otimes \mathcal{O}_{T}$. As there is a nondegenerate pairing

$$
\Omega_{Y_{T}, X_{T}}^{b} \otimes \Omega_{Y_{T}}^{N+n+1-b}\left(\log X_{T}\right) \rightarrow K_{Y_{T}}
$$

we have an isomorphism

$$
\left(\Omega_{Y_{T}, X_{T}}^{b}\right)^{\vee} \cong K_{Y_{T}}^{-1} \otimes \Omega_{Y_{T}}^{N+n+1-b}\left(\log X_{T}\right)
$$

By Serre duality we have

$$
H^{p+q}\left(Y, i_{0}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right)^{\vee} \cong H^{n+1-p-q}\left(Y, \bigwedge^{N} V \otimes i_{0}^{*} \Omega_{Y_{T}}^{N+n+1-b}\left(\log X_{T}\right)\right)
$$

Set

$$
\mathcal{F}_{b}=\bigwedge^{N} V \otimes i_{0}^{*} \Omega_{Y_{T}}^{N+n+1-b}\left(\log X_{T}\right)
$$

and define an increasing filtration L^{\bullet} on $\bigwedge^{N} V$ as the trivial filtration starting in degree $-N$. The exact sequence

$$
0 \rightarrow f^{*} \Omega_{T}^{1} \rightarrow \Omega_{Y_{T}}^{1}\left(\log X_{T}\right) \rightarrow \Omega_{Y_{T} / T}^{1}\left(\log X_{T}\right) \rightarrow 0
$$

defines an increasing filtration L^{\bullet} on $\Omega_{Y_{T}}^{\bullet}\left(\log X_{T}\right)$. The graded pieces of the induced filtration on the tensor product are

$$
\begin{aligned}
\operatorname{Gr}_{L}^{-p} \mathcal{F}_{b} & =\operatorname{Gr}_{L}^{-N} \bigwedge^{N} V \otimes \operatorname{Gr}_{L}^{N-p} i_{0}^{*} \Omega_{Y_{T}}^{N+n+1-b}\left(\log X_{T}\right) \\
& \cong \bigwedge^{p} V \otimes \Omega_{Y}^{n+1-b+p}\left(\log X_{0}\right)
\end{aligned}
$$

hence $E_{1}^{p, q}(b)^{\vee} \cong H^{n+1-p-q}\left(Y, \operatorname{Gr}_{L}^{-p} \mathcal{F}_{b}\right)$ and the spectral sequence dual to $E_{r}^{p, q}(b)$ is

$$
\begin{align*}
E_{1}^{-p, n+1-q}(b) & =H^{n+1-p-q}\left(Y, \operatorname{Gr}_{L}^{-p} \mathcal{F}_{b}\right) \Rightarrow H^{n+1-p-q}\left(Y, \mathcal{F}_{b}\right) \\
E_{1}^{-x, y}(b) & \cong \bigwedge^{x} V \otimes H^{y-x}\left(Y, \Omega_{Y}^{n+1-b+x}\left(\log X_{0}\right)\right) \tag{6}
\end{align*}
$$

Contraction with the 1 -jet $j^{1}(\sigma)$ of $\sigma \in H^{0}\left(Y_{T}, \mathcal{L}\right)$ gives rise to an exact sequence

$$
0 \rightarrow T_{Y_{T}}\left(-\log X_{T}\right) \rightarrow \Sigma_{Y_{T}, \mathcal{L}} \rightarrow \mathcal{L} \rightarrow 0
$$

By taking exterior powers in the dual of this exact sequence we obtain for every $p=0, \ldots, N$ a complex

$$
\mathcal{C}_{p}^{\bullet}(b)=\left(i_{0}^{*} \bigwedge^{n+2-b+p} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \otimes L \rightarrow \ldots \rightarrow i_{0}^{*} K_{Y_{T}} \otimes \mathcal{L}^{N+b-p+1}\right)
$$

concentrated in degrees $0, \ldots, N+b-p$, which is a resolution of the vector bundle $i_{0}^{*} \Omega_{Y_{T}}^{n+1-b+p}\left(\log X_{T}\right)$. The complex

$$
\mathcal{C}^{\bullet}(b)=\Lambda^{N} V \otimes \mathcal{C}_{N}^{\bullet}(b)
$$

is a resolution of \mathcal{F}_{b}. Define a filtration L^{\bullet} on $\mathcal{C}_{N}^{\bullet}(b)$ by

$$
L^{p} \mathcal{C}_{N}^{\bullet}(b)=\operatorname{im}\left(\bigwedge^{p} V^{\vee} \otimes \mathcal{C}_{N-p}^{\bullet}(b) \rightarrow \mathcal{C}_{N}^{\bullet}(b)\right)
$$

The induced filtration on $\mathcal{C}^{\bullet}(b)$ is $L^{-p} \mathcal{C}^{\bullet}(b)=\bigwedge^{N} V \otimes L^{N-p} \mathcal{C}_{N}^{\bullet}(b)$. As the morphism $\mathcal{F}_{b} \rightarrow \mathcal{C}^{\bullet}(b)$ is compatible with the filtrations, we obtain a resolution of $\mathrm{Gr}_{L}^{-p} \mathcal{F}_{b}$ by the complex

$$
G r_{L}^{-p} \mathcal{C} \bullet(b)=\left(\bigwedge^{p} V \otimes \bigwedge^{n+2-b+p} \Sigma_{Y, L}^{\vee} \otimes L \rightarrow \ldots \rightarrow \bigwedge^{p} V \otimes K_{Y} \otimes L^{b-p+1}\right)
$$

concentrated in degrees $0, \ldots, b-p$.
Let $\mathcal{B}^{\bullet \bullet}(b)$ be the subcomplex of the double complex $\mathcal{K} \bullet \otimes \operatorname{Gr}_{L}^{0} \mathcal{C} \bullet(b)$ that consists of terms of nonnegative total degree. (This double complex appeared already in [GM2].) We have

$$
\mathcal{B}^{-i, j}(b)=\bigwedge^{i} V \otimes \bigwedge^{n+2-b+j} \Sigma_{Y, L}^{\vee} \otimes L^{j-i+1}, \quad j-i \geq 0
$$

The complex $\mathcal{B}^{\bullet \bullet \bullet}(b)$ is a second quadrant double complex which consists of the terms $\mathcal{B}^{-i, j}(b)$ with $0 \leq i \leq b, 0 \leq j \leq b$ and $j-i \geq 0$:

$$
\begin{array}{cccc}
\bigwedge^{b} V \otimes K_{Y} \otimes L & \rightarrow & \ldots & \rightarrow \\
& & K_{Y} \otimes L^{b+1} \\
\ddots & & \uparrow \\
& & \ddots & \vdots \\
& & & \bigwedge^{n+2-b} \Sigma_{Y, L}^{\vee} \otimes L
\end{array}
$$

Consider the total complex $\mathcal{B}^{\bullet}(b)=s\left(\mathcal{B}^{\bullet \bullet}(b)\right)$ associated to the double complex $\mathcal{B}^{\bullet \bullet}(b)$. We have

$$
\begin{aligned}
\mathcal{B}^{k}(b) & =\bigoplus_{i=0}^{b} \mathcal{B}^{-i, k+i}(b) \\
& =\bigoplus_{i=0}^{b} \Lambda^{i} V \otimes \bigwedge^{n+2-b+k+i} \Sigma_{Y, L}^{\vee} \otimes L^{k+1}
\end{aligned}
$$

Define a filtration ${ }^{\prime} F^{\bullet}$ on $\mathcal{B}^{\bullet}(b)$ by

$$
{ }^{\prime} F^{-p} \mathcal{B}^{k}(b)=\bigoplus_{i=0}^{p} \mathcal{B}^{-i, k+i}(b)
$$

We define the horizontal differential $d_{\text {hor }}: \mathcal{B}^{-p, q}(b) \rightarrow \mathcal{B}^{-p+1, q}(b)$ using the differential of the Koszul complex: $d_{\text {hor }}=\delta_{p} \otimes \mathrm{id}$. The vertical differential $d_{\text {vert }}: \mathcal{B}^{-p, q}(b) \rightarrow \mathcal{B}^{-p, q+1}(b)$ is given by contraction with the 1 -jet $j^{1}\left(s_{0}\right) \in P^{1}(L)$. As the horizontal and vertical differentials commute, we define a modified vertical differential $d_{\mathrm{vert}}^{\prime}$ by $\left.d_{\text {vert }}^{\prime}\right|_{\mathcal{B}}{ }^{-p, q(b)}=(-1)^{N-p} d_{\mathrm{vert}}$. The differentials $d_{\text {hor }}$ and $d_{\text {vert }}^{\prime}$ of the complex $\mathcal{B}^{\bullet}(b)$ anticommute. We define a differential d of $\mathcal{B}^{\bullet}(b)$ by $d=d_{\text {hor }}+d_{\text {vert }}^{\prime}$.

The splitting of the exact sequence (3) induces an isomorphism of vector bundles

$$
i_{0}^{*} \bigwedge^{n+2-b+p+N} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \rightarrow \bigoplus_{k=0}^{b-p} \bigwedge^{N-k} V^{\vee} \otimes \bigwedge^{n+2-b+p+k} \Sigma_{Y, L}^{\vee}
$$

Using the contraction maps $\bigwedge^{N} V \otimes \bigwedge^{N-k} V^{\vee} \rightarrow \bigwedge^{k} V$, we obtain an isomorphism of vector bundles

$$
\bigwedge^{N} V \otimes i_{0}^{*} \bigwedge^{n+2-b+p+N} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \rightarrow \bigoplus_{k=0}^{b-p} \bigwedge^{k} V \otimes \bigwedge^{n+2-b+p+k} \Sigma_{Y, L}^{\vee}
$$

and an isomorphism of vector bundles $h_{p}: \mathcal{C}^{p}(b) \rightarrow \mathcal{B}^{p}(b)$, which is a direct sum of homomorphisms $h_{p, k}: \mathcal{C}^{p}(b) \rightarrow \mathcal{B}^{-k, k+p}(b)$.

Lemma 3.4. The maps h_{p} induce an isomorphism $h: \mathcal{C}^{\bullet}(b) \rightarrow \mathcal{B}^{\bullet}(b)$ of complexes of sheaves of \mathcal{O}_{Y}-modules that is compatible with the filtrations L^{\bullet} and ${ }^{\prime} F^{\bullet}$.

Proof: Choose an open covering $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ of Y and trivialisations of L and the bundle of differential operators over U_{i}. The variety Y_{T} is covered by open subsets $U \times T(U \in \mathcal{U})$ with local coordinates $\left(y_{1}, \ldots, y_{n+1}, t_{1}, \ldots, t_{N}\right)$. Let $\left\{d t_{1}, \ldots, d t_{N}\right\}$ be a basis of $V^{\vee} \cong \Omega_{T, 0}^{1}$, and let $\left\{s_{1}, \ldots, s_{N}\right\}$ be the dual basis of V. We write $f_{i}=\left.s_{i}\right|_{U} \in \Gamma(U, L) \cong \Gamma\left(U, \mathcal{O}_{U}\right)$. We have

$$
\begin{aligned}
\left.\sigma\right|_{U \times T} & =\sum_{k} t_{k} f_{k}(y) \\
j^{1}\left(\left.\sigma\right|_{U \times T}\right) & =\sum_{k} t_{k} f_{k}+\sum_{k, i} t_{k} \frac{\partial f_{k}(y)}{\partial y_{i}} \otimes d y_{i}+\sum_{i} f_{i} \otimes d t_{i} .
\end{aligned}
$$

As $\left.i_{0}^{*} \sigma\right|_{U \times T}=\left.s_{0}\right|_{U}=f_{0}$, we have $i_{0}^{*} j^{1}\left(\left.\sigma\right|_{U \times T}\right)=\omega_{1}+\omega_{2}$ with

$$
\begin{aligned}
& \omega_{1}=f_{0}+\sum_{i} \frac{\partial f_{0}}{\partial y_{i}} \otimes d y_{i}=j^{1}\left(f_{0}\right) \\
& \omega_{2}=\sum_{i} f_{i} \otimes d t_{i}
\end{aligned}
$$

The differential d^{\prime} of the complex $\mathcal{C}^{\bullet}(b)$ is given by contraction with $i_{0}^{*} j^{1}(\sigma)$. Let $d_{i}^{\prime \prime}$ be the map given by contraction with ω_{i} for $i=1,2$. The differential d^{\prime} splits as $d^{\prime}=d_{1}^{\prime}+d_{2}^{\prime}$. Put $m=n+2-b+p+N$. To show that $h_{p+1^{\circ} d^{\prime}}=d_{\circ} h_{p}$, we shall show that the diagrams

$$
\begin{array}{ccc}
\Lambda^{k} V \otimes \bigwedge^{m-N+k} \Sigma_{Y, L}^{\vee} \otimes L^{p+1} & \xrightarrow{d_{\text {ver }}^{\prime}} & \bigwedge^{k} V \otimes \bigwedge^{m+1-N+k} \Sigma_{Y, L}^{\vee} \otimes L^{p+2} \\
\uparrow_{p, k}^{h_{p, k}} & \uparrow_{h_{p+1, k}} \\
\Lambda^{N} V \otimes i_{0}^{*} \bigwedge^{m} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \otimes L^{p+1} & \xrightarrow[\rightarrow]{d_{1}^{\prime}} & \bigwedge^{N} V \otimes i_{0}^{*} \bigwedge^{m+1} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \otimes L^{p+2}
\end{array}
$$

and

$$
\begin{array}{ccc}
\bigwedge^{k} V \otimes \bigwedge^{m-N+k} \Sigma_{Y, L}^{\vee} \otimes L^{p+1} & \xrightarrow{d_{\text {hor }}} & \bigwedge^{k-1} V \otimes \bigwedge^{m-N+k} \Sigma_{Y, L}^{\vee} \otimes L^{p+2} \\
\uparrow_{h_{p, k}} & & \uparrow_{h_{p+1, k-1}} \\
\Lambda^{N} V \otimes i_{0}^{*} \bigwedge^{m} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \otimes L^{p+1} & \xrightarrow{d_{2}^{\prime}} & \Lambda^{N} V \otimes i_{0}^{*} \bigwedge^{m+1} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \otimes L^{p+2}
\end{array}
$$

commute for every $p \geq 1$ and $k \in\{0, \ldots, b-p\}$.
Given $\left.\zeta \in i_{0}^{*} \bigwedge^{n+2-b+p+N} \Sigma_{Y_{T}, \mathcal{L}}^{\vee} \otimes L^{p+1}\right|_{U}$, write

$$
\zeta=\eta+f \otimes \eta^{\prime}
$$

with $\left.\eta \in \Omega_{Y_{T}}^{n+2-b+p+N} \otimes L^{p+1}\right|_{U}, f \in \mathcal{O}_{U}$ and $\left.\eta^{\prime} \in i_{0}^{*} \Omega_{Y_{T}}^{n+1-b+p+N} \otimes L^{p+1}\right|_{U}$. We shall check that the two diagrams commute for η; the proof for $f \otimes \eta^{\prime}$ is similar. Write $\eta=\sum_{k} \eta_{1, k} \wedge \eta_{2, k} \otimes g_{k}$ with $\eta_{1, k} \in \bigwedge^{N-k} V^{\vee} \otimes \mathcal{O}_{U}, \eta_{2, k} \in$ $\left.\bigwedge^{n+2-b+p+k} \sum_{Y, L}^{\vee}\right|_{U},\left.g_{k} \in L^{p+1}\right|_{U} \cong \mathcal{O}_{U}$.

In the first diagram we have

$$
\begin{aligned}
d_{1}^{\prime}(\xi \otimes \eta)= & \xi \otimes \omega_{1} \cdot \eta \\
= & \xi \otimes f_{0} \eta+ \\
& \xi \otimes \sum_{k, i} d y_{i} \wedge \eta_{1, k} \wedge \eta_{2, k} \otimes g_{k} \otimes \frac{\partial f_{0}}{\partial y_{i}} \\
= & \xi \otimes f_{0} \eta+ \\
& (-1)^{N-k} \xi \otimes \sum_{k, i} \eta_{1, k} \wedge d y_{i} \wedge \eta_{2, k} \otimes g_{k} \otimes \frac{\partial f_{0}}{\partial y_{i}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
h_{p+1, k}\left(d_{1}^{\prime}(\xi \otimes \eta)\right)= & \sum_{k}\left\langle\eta_{1, k}, \xi\right\rangle \wedge \eta_{2, k} \otimes g_{k} \otimes f_{0}+ \\
& (-1)^{N-k} \sum_{k, i}\left\langle\eta_{1, k}, \xi\right\rangle \otimes d y_{i} \wedge \eta_{2, k} \otimes g_{k} \otimes \frac{\partial f_{0}}{\partial y_{i}} .
\end{aligned}
$$

As

$$
d_{\mathrm{vert}}^{\prime}\left(h_{p, k}(\xi \otimes \eta)\right)=d_{\mathrm{vert}}^{\prime}\left(\sum_{k}\left\langle\eta_{1, k}, \xi\right\rangle \otimes \eta_{2, k} \otimes g_{k}\right)
$$

and $j^{1}\left(f_{0}\right)=\omega_{1}$, the first diagram commutes.
In the second diagram we have

$$
h_{p+1, k-1}\left(d_{2}^{\prime}(\xi \otimes \eta)\right)=\sum_{k, i}\left\langle d t_{i} \wedge \eta_{1, k}, \xi\right\rangle \otimes \eta_{2, k} \otimes f_{i} \otimes g_{k}
$$

and

$$
\begin{aligned}
d_{\mathrm{hor}}\left(h_{p, k}(\xi \otimes \eta)\right) & =\sum_{k, i}\left\langle d t_{i},\left\langle\eta_{1, k}, \xi\right\rangle\right\rangle \otimes \eta_{2, k} \otimes f_{i} \otimes g_{k} \\
& =\sum_{k, i}\left\langle d t_{i} \wedge \eta_{1, k}, \xi\right\rangle \otimes \eta_{2, k} \otimes f_{i} \otimes g_{k}
\end{aligned}
$$

Hence the second diagram commutes. The isomorphism of complexes h is compatible with the filtrations because the sequence (3) splits.

Put $B^{\bullet \bullet \bullet}(b)=\Gamma\left(Y, \mathcal{B}^{\bullet \bullet}(b)\right)$ and $B^{\bullet}(b)=s\left(B^{\bullet \bullet}(b)\right)$. We have two spectral sequences

$$
\begin{gather*}
{ }^{\prime} E_{1}^{p, q}(b)=H^{q}\left(B^{p, \bullet}(b)\right) \Rightarrow H^{p+q}\left(B^{\bullet}(b)\right) \tag{7}\\
{ }^{\prime} E_{1}^{p, q}(b)=H^{q}\left(B^{\bullet, p}(b)\right) \Rightarrow H^{p+q}\left(B^{\bullet}(b)\right) . \tag{8}
\end{gather*}
$$

The E_{1} terms of the first spectral sequence are related to Jacobi rings and the E_{1} terms of the second spectral sequence are Koszul cohomology groups. We start with the description of ${ }^{\prime} E_{1}^{-p, q}(b)$. Let \mathcal{F} be a coherent sheaf on Y and let

$$
R_{Y, s_{0}}(\mathcal{F})=\operatorname{coker}\left(H^{0}\left(Y, \mathcal{F} \otimes \Sigma_{L} \otimes L^{-1}\right) \rightarrow H^{0}(Y, \mathcal{F})\right)
$$

be the cokernel of the map given by contraction with the 1 -jet $j^{1}\left(s_{0}\right) \in P^{1}(L)$ (this is a graded piece of the Jacobi ring defined by Green [G1]). We have

$$
\begin{equation*}
{ }^{\prime} E_{1}^{-p, b}(b) \cong \bigwedge^{p} V \otimes R_{Y, s_{0}}\left(K_{Y} \otimes L^{b-p+1}\right) \tag{9}
\end{equation*}
$$

As $B^{-q, p}(b)=\bigwedge^{q} V \otimes H^{0}\left(Y, \bigwedge^{n+2-b+p} \Sigma_{Y, L}^{\vee} \otimes L^{p-q+1}\right)$, it follows that

$$
\begin{equation*}
{ }^{\prime \prime} E_{1}^{p,-q}(b)=\mathcal{K}_{q, p-q+1}\left(\bigwedge^{n+2-b+p} \Sigma_{Y, L}^{\vee}, L\right) . \tag{10}
\end{equation*}
$$

Lemma 3.5. For all $t \in H^{0}(Y, L) \backslash \Delta^{\prime}$ there exists a morphism of spectral sequences

$$
\psi:^{\prime} E_{r}^{-p, n+1-q}(b) \rightarrow E_{r}^{-p, n+1-q}(b)
$$

Proof: Let $g:\left(\mathcal{F}_{b}, L\right) \rightarrow\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)$ be the composition of the filtered quasiisomorphism $\left(\mathcal{F}_{b}, L\right) \rightarrow\left(\mathcal{C}^{\bullet}(b), L\right)$ and the isomorphism $h:\left(\mathcal{C}^{\bullet}(b), L\right) \rightarrow$ $\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)$. There exists a spectral sequence

$$
E_{1}^{-p, n+1-q}\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)=\mathbb{H}^{n+1-p-q}\left(\operatorname{Gr}_{F}^{-p} \mathcal{B}^{\bullet}(b)\right) \Rightarrow \mathbb{H}^{n+1-p-q}\left(\mathcal{B}^{\bullet}(b)\right)
$$

The morphism g induces an isomorphism of spectral sequences

$$
E_{r}^{-p, n+1-q}\left(\mathcal{F}_{b}, L\right) \cong E_{r}^{-p, n+1-q}\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)
$$

Let $\left(\mathcal{I}^{\bullet}, G\right)$ be a filtered injective resolution of $\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)$. The morphism of complexes $\Gamma\left(Y, \mathcal{B}^{\bullet}(b)\right) \rightarrow \Gamma\left(Y, \mathcal{I}^{\bullet}\right)$ induces a morphism of spectral sequences ${ }^{\prime} E_{r}{ }^{-p, n+1-q}(b) \rightarrow E_{r}^{-p, n+1-q}\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)$. The composition of this morphism with the inverse of the isomorphism $E_{r}^{-p, n+1-q}(b) \rightarrow E_{r}^{-p, n+1-q}\left(\mathcal{B}^{\bullet}(b),{ }^{\prime} F\right)$ is a morphism of spectral sequences

$$
\psi:^{\prime} E_{r}^{-p, n+1-q}(b) \rightarrow E_{r}^{-p, n+1-q}(b) .
$$

Lemma 3.6. Suppose that for all $k \leq c$ and for all $t \in U^{\prime}=H^{0}(Y, L) \backslash \Delta^{\prime}$ we have
(i) $E_{1}^{-x, y}(b) \cong{ }^{\prime} E_{1}^{-x, y}(b)$ for all (x, y) such that $0 \leq x \leq b, b-k+1 \leq y \leq b$;
(ii) " $E_{1}^{x,-y}(b)=0$ for all (x, y) such that $x \geq 0, y \geq 0$ and $b-k+1 \leq$ $x-y \leq b$.
Then for every smooth morphism $g: T \rightarrow U$ we have $H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$.

Proof: By Lemma 2.10 it suffices to show that for all $t \in U^{\prime}$ we have $E_{\infty}^{p, q}(b)=0$ for all $k \leq c$ and for all (p, q, b) such that $p+q+b \leq n+k$, $b \geq b_{k}$. By Serre duality we have

$$
E_{\infty}^{p, q}(b)=H^{p+q}\left(Y, i_{0}^{*} \Omega_{Y_{T}, X_{T}}^{b}\right)=0 \Longleftrightarrow E_{\infty}^{-p, n+1-q}(b)=H^{n+1-p-q}\left(Y, \mathcal{F}_{b}\right)=0
$$

As $p+q+b \leq n+k$ and $b+q \geq n+1$ we have $b-k+1 \leq n+1-q \leq b$ and $0 \leq p \leq k-1$. By Lemma 3.5 we have

$$
E_{\infty}^{-p, n+1-q}(b) \cong{ }^{\prime} E_{\infty}^{-p, n+1-q}(b)
$$

if condition (i) is satisfied. (This follows by consideration of the incoming and outgoing differentials at the positions $(-p, n+1-q)$; note that $E_{1}^{-x, y}(b)=0$ if $x>b$.) As ${ }^{\prime} E_{\infty}^{n+1-p-q}(b) \cong{ }^{\prime \prime} E_{\infty}^{n+1-p-q}(b)$, it follows that ${ }^{\prime} E_{\infty}^{-p, n+1-q}(b)=0$ if " $E_{\infty}^{x,-y}(b)=0$ for all (x, y) such that $b-k+1 \leq x-y \leq b$. This follows from condition (ii).

We turn to the case of complete intersections. Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a smooth polarised variety of dimension $n+r+1$, and set $E=\mathcal{O}_{Y}\left(d_{0}\right) \oplus \cdots \oplus \mathcal{O}_{Y}\left(d_{r}\right)$. Let $P=\mathbb{P}\left(E^{\vee}\right)$ be the projective bundle whose fiber over $y \in Y$ is the projective space of hyperplanes in E_{y}, and let $\pi: P \rightarrow Y$ be the projection map. The tautological line bundle over P will be denoted by ξ_{E}. The zero locus $X_{t}=V(t)$ of a general section $t \in H^{0}(Y, E)$ is a smooth complete intersection of dimension n and multidegree $\left(d_{0}, \ldots, d_{r}\right)$ in Y. Let $\tilde{t} \in H^{0}\left(P, \xi_{E}\right)$ be the section that corresponds to t under the canonical isomorphism $H^{0}(Y, E)=H^{0}\left(P, \xi_{E}\right)$. Set $\tilde{X}_{t}=V(\tilde{t}) \subset P$.

There is a relative version of this construction. Set $S=\mathbb{P} H^{0}(Y, E)$ and define

$$
\mathcal{E}=p_{Y}^{*} E \otimes p_{S}^{*} \mathcal{O}_{S}(1)
$$

For a smooth morhpism $h: T \rightarrow S$ we write $\mathcal{E}_{T}=(\mathrm{id} \times h)^{*} \mathcal{E}$ and $P_{T}=\mathbb{P}\left(\mathcal{E}_{T}^{\vee}\right)$. Note that in general P_{T} is not isomorphic to $P \times T$, unless the line bundle $\mathcal{O}_{T}(1)$ is trivial. Let $\pi_{T}: P_{T} \rightarrow Y_{T}$ be the projection map and let ξ_{T} be the tautological line bundle on P_{T}. The universal family $X_{S} \subset Y_{S}$ is the zero locus of the tautological section $\tau \in H^{0}\left(Y_{S}, \mathcal{E}\right)$. Set $\sigma=(\mathrm{id} \times h)^{*} \tau \in$ $H^{0}\left(Y_{T}, \mathcal{E}_{T}\right)$. We have $X_{T}=V(\sigma) \subset Y_{T}$. Let $\tilde{\sigma} \in H^{0}\left(P_{T}, \xi_{T}\right)$ be the section that corresponds to σ and define $\tilde{X}_{T}=V(\tilde{\sigma}) \subset P_{T}$.

Lemma 3.7. The map $\left(\pi_{T}\right)_{*}$ induces an isomorphism

$$
H^{k+2 r}\left(P_{T}, \tilde{X}_{T}\right) \cong H^{k}\left(Y_{T}, X_{T}\right)
$$

for all $k \geq 0$.
Proof: (cf. [ENS, 2.1]) Consider the diagram

$$
\begin{array}{rllllll}
\pi_{T}^{-1}\left(X_{T}\right)=\mathbb{P}\left(\left.\mathcal{E}_{T}^{\vee}\right|_{X_{T}}\right) & \subset & \tilde{X}_{T} & \subset P_{T} & \supset & P_{T} \backslash \tilde{X}_{T} \\
& & \mid \pi_{T} & & \mid \pi_{T} \\
& X_{T} & \subset & Y_{T} & \supset & Y_{T} \backslash X_{T} .
\end{array}
$$

As the line bundle ξ_{T} restricts to $\mathcal{O}_{\mathbb{P}}(1)$ on each fiber of π_{T}, the induced map

$$
\pi_{T}: P_{T} \backslash \tilde{X}_{T} \rightarrow Y_{T} \backslash X_{T}
$$

is a fiber bundle with fibers isomorphic to \mathbb{A}^{r}. Hence $\left(\pi_{T}\right)_{*}$ induces an isomorphism

$$
H_{c}^{k+2 r}\left(P_{T} \backslash \tilde{X}_{T}\right) \cong H_{c}^{k}\left(Y_{T} \backslash X_{T}\right)
$$

By Poincaré-Lefschetz duality we find an isomorphism $H^{k+2 r}\left(P_{T}, \tilde{X}_{T}\right) \cong$ $H^{k}\left(Y_{T}, X_{T}\right)$.

Remark 3.8. In a similar way one shows that $H^{k}\left(Y, X_{t}\right) \cong H^{k+2 r}\left(P, \tilde{X}_{t}\right)$ for all $t \in T$. As this map is an isomorphism of mixed Hodge structures, we obtain isomorphisms $H^{a}\left(Y, \Omega_{Y, X_{t}}^{b}\right) \cong H^{a+r}\left(P, \Omega_{P, \tilde{X}_{t}}^{b+r}\right)$ (cf. [DD, Lemme 2.2]).

Let $\iota_{t}: P_{t} \rightarrow P_{T}$ be the inclusion map. As in Lemma 2.8 one constructs a spectral sequence

$$
\tilde{E}_{1}^{p, q}(b)=\Omega_{T, t}^{p} \otimes H^{p+q}\left(P_{t}, \Omega_{P_{t}, \tilde{X}_{t}}^{b-p}\right) \Rightarrow H^{p+q}\left(P_{t}, \iota_{t}^{*} \Omega_{P_{T}, \tilde{X}_{T}}^{b}\right) .
$$

We have

$$
\begin{aligned}
E_{1}^{p, q}(b) & =\Omega_{T, t}^{p} \otimes H^{p+q}\left(Y, \Omega_{Y, X_{t}}^{b-p}\right) \\
& \cong \Omega_{T, t}^{p} \otimes H^{p+q+r}\left(P, \Omega_{P, \tilde{X}_{t}}^{b-p+r}\right)=\tilde{E}_{1}^{p, q+r}(b+r)
\end{aligned}
$$

Lemma 3.9. Suppose that for all $k \leq c$ and for all $t \in U^{\prime}=H^{0}(Y, E) \backslash \Delta^{\prime}$ we have
(i) $\tilde{E}_{1}^{-x, y+r}(b+r) \cong{ }^{\prime} \tilde{E}_{1}^{-x, y+r}(b+r)$ for all (x, y) such that $0 \leq x \leq b$ and $b-k+1 \leq y \leq b ;$
(ii) " $\tilde{E}_{1}^{x,-y+r}(b+r)=0$ for all (x, y) such that $x \geq 0, y \geq r$ and $b-k+1 \leq$ $x-y \leq b$.

Then for every smooth morphism $g: T \rightarrow U$ we have $H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$.

Proof: By Lemma 3.7 we have

$$
H^{n+k}\left(Y_{T}, X_{T}\right)=0 \Longleftrightarrow H^{n+k+2 r}\left(P_{T}, \tilde{X}_{T}\right)=0
$$

As U^{\prime} is an open subset of the affine space $H^{0}(Y, E)$, the line bundle $\mathcal{O}_{U^{\prime}}(1)$ is trivial. Hence $P_{U^{\prime}} \cong P \times U^{\prime}$. It follows from Lemma 3.6, applied to the pair $(Y, L)=\left(P, \xi_{E}\right)$, that the conditions of Lemma 2.10 are satisfied for the pair $\left(P, \xi_{E}\right)$. (In the proof of Lemma 3.6 we have to replace $n=\operatorname{dim} X_{t}$ by $n^{\prime}=n+2 r=\operatorname{dim} \tilde{X}_{t}$ and b by $b^{\prime}=b+r$.) The result follows from Lemma 2.10, applied to the pair $\left(P_{U}, \tilde{X}_{U}\right)$. Note that the conclusion of Lemma 2.6 (which is used in the proof of Lemma 2.10) remains valid for the pair $\left(P_{U}, \tilde{X}_{U}\right)$, although $P_{U} \neq P \times U$, by Remark 2.11.

Let M_{ξ} be the kernel of the surjective evaluation map $e: V \otimes \mathcal{O}_{P} \rightarrow \xi_{E}$.

Lemma 3.10.

(i) $H^{i}\left(P, \Omega_{P}^{j} \otimes \xi_{E}^{k}\right)=0$ if

$$
H^{i+t}\left(Y, \Omega_{Y}^{u} \otimes \bigwedge^{v} E \otimes S^{w} E\right)=0
$$

for all (t, u, v, w) such that $0 \leq u \leq j, u+v=j+t+1, v+w=k$ and $0 \leq t \leq r-j+u$.
(ii) $H^{1}\left(P, \bigwedge^{i} M_{\xi} \otimes \Omega_{P}^{j} \otimes \xi_{E}^{k}\right)=0$ if

$$
H^{s+t+1}\left(Y, \bigwedge^{e} M_{E} \otimes \bigwedge^{f} E \otimes \Omega_{Y}^{u} \otimes \bigwedge^{v} E \otimes S^{w} E\right)=0
$$

for all (e, f, s, t, u, v, w) such that $s \geq 0, t \geq 0, e+f=i+s+1$, $0 \leq e \leq i, u+v=j+t+1, v+w=k-s-1$.
Proof: (i): Let $\pi: P \rightarrow Y$ be the projection map. The exact sequence

$$
\begin{equation*}
0 \rightarrow \pi^{*} \Omega_{Y}^{1} \rightarrow \Omega_{P}^{1} \rightarrow \Omega_{P / Y}^{1} \rightarrow 0 \tag{11}
\end{equation*}
$$

defines a filtration L^{\bullet} on Ω_{P}^{j} with graded pieces $\operatorname{Gr}_{L}^{u} \Omega_{P}^{j}=\pi^{*} \Omega_{Y}^{u} \otimes \Omega_{P / Y}^{j-u}$. Hence it suffices to show that $H^{i}\left(P, \pi^{*} \Omega_{Y}^{u} \otimes \Omega_{P / Y}^{j-u} \otimes \xi_{E}^{k}\right)=0$ for all $0 \leq u \leq j$. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{P} \rightarrow \pi^{*} E^{\vee} \otimes \xi_{E} \rightarrow T_{P / Y} \rightarrow 0
$$

we obtain a resolution

$$
\begin{equation*}
\pi^{*} \bigwedge^{r+1} E \otimes \xi_{E}^{-r-1} \rightarrow \ldots \rightarrow \pi^{*} \bigwedge^{j-u+1} E \otimes \xi_{E}^{-j+u-1} \rightarrow \Omega_{P / Y}^{j-u} \rightarrow 0 \tag{12}
\end{equation*}
$$

Using this resolution, we find that it suffices to show that

$$
H^{i+t}\left(P, \pi^{*} \Omega_{Y}^{u} \otimes \pi^{*} \bigwedge^{j-u+t+1} E \otimes \xi_{E}^{k-j+u-t-1}\right)=0
$$

for all $0 \leq t \leq r-j+u$. Using the projection formula and the Leray spectral sequence, we find the condition of the lemma if we set $v=j-u+t+1$ and $w=k-j+u-t-1$.
(ii): From the commutative diagram

and the snake lemma we deduce an exact sequence

$$
0 \rightarrow \pi^{*} M_{E} \rightarrow M_{\xi} \rightarrow \Omega_{P / Y}^{1} \otimes \xi_{E} \rightarrow 0
$$

This exact sequence induces a filtration on $\bigwedge^{i} M_{E}$. Using this filtration, the filtration on Ω_{Y}^{j} coming from (11) and the resolution (12) we find that $H^{1}\left(P, \bigwedge^{i} M_{\xi} \otimes \Omega_{P}^{j} \otimes \xi_{E}^{k}\right)=0$ if

$$
H^{s+t+1}\left(Y, \bigwedge^{e} M_{E} \otimes \bigwedge^{f} E \otimes \Omega_{Y}^{u} \otimes \bigwedge^{v} E \otimes S^{w} E\right)=0
$$

where $f=i-e+s+1, v=j-u+t+1$ and $w=k-j+u-s-t-2$.

Lemma 3.11. (Green) Let E be a vector bundle on \mathbb{P}^{N} and let \mathcal{F} be a coherent sheaf of $\mathcal{O}_{\mathbb{P}}$-modules. Then $m(E \otimes \mathcal{F}) \leq m(E)+m(\mathcal{F})$ and $m\left(\bigwedge^{c} E\right) \leq m\left(E^{\otimes c}\right)$.

Proof: This follows from the proof of [G3, Lemma 1].

Recall the notation

$$
m_{j}=m\left(\Omega_{Y}^{j}\right)=\min \left\{k \in \mathbb{Z} \mid H^{i}\left(Y, \Omega_{Y}^{j}(k-i)\right)=0 \text { for all } i>0\right\}
$$

Lemma 3.12.

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{c} M_{E} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

if $i \geq 1$ and $k+i \geq m_{j}+c$.
Proof: Define $V=H^{0}\left(Y, \mathcal{O}_{Y}(1)\right)$. The line bundle $\mathcal{O}_{Y}(1)$ defines an embedding

$$
f: Y \rightarrow \mathbb{P}\left(V^{\vee}\right)
$$

Set

$$
W=\oplus_{i=0}^{r} S^{d_{i}} V
$$

and let M_{W} be the kernel of the surjective map $W \otimes \mathcal{O}_{Y} \rightarrow E$. Paranjape [Pa, Lemma 2.4] proves that

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{c} M_{W} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

if $i \geq 1$ and $k+i \geq m_{j}+c$. The idea is to write the vector bundle M_{W} on Y as a direct sum of pullbacks of vector bundles E_{i} on $\mathbb{P}\left(V^{\vee}\right)$ that are 1-regular and to apply the projection formula to reduce to a vanishing statement on projective space. The latter statement is proved by applying Lemma 3.11 to the 1-regular vector bundle $\oplus_{i=0}^{r} E_{i}$ and the coherent sheaf $f_{*} \Omega_{Y}^{j}$.

The vector bundle M_{E} differs from Paranjape's vector bundle M_{W}. Define $K=\oplus_{i=0}^{r} H^{0}\left(\mathbb{P}\left(V^{\vee}\right), \mathcal{I}_{Y}\left(d_{i}\right)\right)$ and $Q=\oplus_{i=0}^{r} H^{1}\left(\mathbb{P}\left(V^{\vee}\right), \mathcal{I}_{Y}\left(d_{i}\right)\right)$. There is an exact sequence

$$
0 \rightarrow K \rightarrow W \rightarrow H^{0}(Y, E) \rightarrow Q \rightarrow 0
$$

We have a commutative diagram

The exact sequence of vector bundles

$$
0 \rightarrow K \otimes \mathcal{O}_{Y} \rightarrow M_{W} \rightarrow M_{E} \rightarrow Q \otimes \mathcal{O}_{Y} \rightarrow 0
$$

can be split into two exact sequences of vector bundles

$$
\begin{align*}
& 0 \rightarrow K \otimes \mathcal{O}_{Y} \rightarrow M_{W} \rightarrow \mathcal{R} \rightarrow 0 \tag{13}\\
& 0 \rightarrow \mathcal{R} \rightarrow M_{E} \rightarrow Q \otimes \mathcal{O}_{Y} \rightarrow 0 \tag{14}
\end{align*}
$$

The exact sequence (14) induces a filtration on $\bigwedge^{c} M_{E}$ with graded pieces

$$
\bigwedge^{p} \mathcal{R} \otimes \bigwedge^{c-p} Q \otimes \mathcal{O}_{Y}
$$

Hence

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{c} M_{E} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

if

$$
\bigwedge^{c-p} Q \otimes H^{i}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{p} \mathcal{R} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

for $p=0, \cdots, c$. The exact sequence (13) induces a long exact sequence (cf. [G5, Lecture 4, p. 39])

$$
\begin{array}{r}
0 \rightarrow S^{p} K \otimes \mathcal{O}_{Y} \rightarrow S^{p-1} K \otimes M_{W} \rightarrow S^{p-2} K \otimes \bigwedge^{2} M_{W} \rightarrow \cdots \rightarrow \\
\rightarrow \bigwedge^{p} M_{W} \rightarrow \bigwedge^{p} \mathcal{R} \rightarrow 0
\end{array}
$$

for all $p \geq 0$. Using this exact sequence we find that

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{p} \mathcal{R} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

if

$$
S^{t} K \otimes H^{i+t}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{p-t} M_{W} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

for all $t=0, \cdots, p$. Using [loc.cit., Lemma 2.4] we find the condition

$$
k+i+t \geq m_{j}+p-t
$$

Hence

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes \bigwedge^{c} M_{E} \otimes \mathcal{O}_{Y}(k)\right)=0
$$

if $i \geq 1$ and $k+i \geq m_{j}+c$.

For an increasing multi-index $I=\left(i_{1}, \ldots, i_{p}\right), 0 \leq i_{1} \leq \ldots \leq i_{p} \leq r$, we set $d^{(I)}=\sum_{k=1}^{p} d_{i_{k}}$. For a strictly increasing multi-index $I=\left(i_{1}, \ldots, i_{p}\right)$, $0 \leq i_{1}<\ldots<i_{p} \leq r$, we write $d^{<I>}$ in stead of $d^{(I)}$.

Theorem 3.13. Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a smooth polarised variety of dimension $n+r+1$. Let d_{0}, \ldots, d_{r} be natural numbers ordered in such a way that $d_{0} \geq \cdots \geq d_{r}$. Define $E=\mathcal{O}_{Y}\left(d_{0}\right) \oplus \ldots \mathcal{O}_{Y}\left(d_{r}\right)$ and let $U \subset \mathbb{P} H^{0}(Y, E)$ be the complement of the discriminant locus. Let m_{j} be the regularity of Ω_{Y}^{j} and define

$$
m_{Y}=\max \left\{m_{j}-j-1 \mid 0 \leq j \leq \operatorname{dim} Y\right\} .
$$

Set $\mu=\left[\frac{n+c}{2}\right]$. Consider the conditions
(C) $\sum_{\nu=\min (c, r)}^{r} d_{\nu} \geq m_{Y}+\operatorname{dim} Y-1$;
$\left(C_{i}\right) \sum_{\nu=i}^{r} d_{\nu}+(\mu-c+i) d_{r} \geq m_{Y}+\operatorname{dim} Y+c-i$.
If condition (C) is satisfied and if the conditions $\left(C_{i}\right)$ are satisfied for all i with $0 \leq i \leq \min (c-1, r)$, then for every smooth morphism $g: T \rightarrow U$ we have $H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for all $k \leq c$.

Proof: We shall verify the conditions (i) and (ii) of Lemma 3.9.
(i): Set $n^{\prime}=n+2 r$ and $b^{\prime}=b+r$. From (6) and (7), applied with (Y, L) replaced by (P, ξ) and (n, b) replaced by $\left(n^{\prime}, b^{\prime}\right)$, we obtain

$$
\begin{aligned}
\tilde{E}_{1}^{-x, y+r}(b+r) & =\bigwedge^{x} V \otimes H^{y+r-x}\left(P, \Omega_{P}^{n^{\prime}+1-b^{\prime}+x}\left(\log \tilde{X}_{t}\right)\right) \\
\prime^{-x, y+r}(b+r) & =H^{y+r}\left(\tilde{B}^{-x, \bullet}(b+r)\right)
\end{aligned}
$$

where $\tilde{B}^{-x, \bullet}(b+r)$ is the complex obtained by taking global sections in the complex

$$
\tilde{\mathcal{B}}^{-x, \bullet}(b+r)=\left(\bigwedge^{x} V \otimes \bigwedge^{n^{\prime}+2-b^{\prime}+x} \Sigma_{P, \xi}^{\vee} \otimes \xi_{E} \rightarrow \ldots \rightarrow \bigwedge^{x} V \otimes K_{P} \otimes \xi_{E}^{b^{\prime}-x+1}\right)
$$

concentrated in degrees $x, \ldots, b+r$. The complex $\tilde{\mathcal{B}}^{-x, \bullet}(b+r)[x]$ (concentrated in degrees $0, \ldots, b+r-x)$ is a resolution of $\Omega_{P}^{n+r+1-b+x}\left(\log \tilde{X}_{t}\right)$. Hence

$$
\begin{aligned}
\tilde{E}_{1}^{-x, y+r}(b+r) & \cong \mathbb{H}^{y+r-x}\left(\tilde{\mathcal{B}}^{-x, \bullet}(b+r)[x]\right) \\
& =\mathbb{H}^{y+r}\left(\tilde{\mathcal{B}}^{-x, \bullet}(b+r)\right)
\end{aligned}
$$

The spectral sequence of hypercohomology associated to the filtration bête on the complex $\tilde{\mathcal{B}}^{-x, \bullet}(b+r)[x]$ shows that condition (i) is satisfied if

$$
H^{y+r-x-i-j}\left(P, \bigwedge^{n^{\prime}+2-b^{\prime}+x+i} \Sigma_{P, \xi}^{\vee} \otimes \xi_{E}^{i+1}\right)=0
$$

for all pairs (i, j) such that $0 \leq i \leq y+r-x-j-1$ and $0 \leq j \leq 1$. For every $p \geq 1$ we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \Omega_{P}^{p} \rightarrow \bigwedge^{p} \Sigma_{P, \xi}^{\vee} \rightarrow \Omega_{P}^{p-1} \rightarrow 0 \tag{15}
\end{equation*}
$$

Hence it suffices to show that

$$
H^{y+r-x-i-j}\left(P, \Omega_{P}^{n^{\prime}+2-b^{\prime}+x+i-z} \otimes \xi_{E}^{i+1}\right)=0
$$

if $0 \leq z \leq 1$. Using Lemma 3.10 (i) we reduce to the condition

$$
H^{y+r-x-i-j+t}\left(Y, \Omega_{Y}^{u} \otimes \bigwedge^{v} E \otimes S^{w} E\right)=0
$$

where
(a) $y+r-x-i-j+t \geq 1$;
(b) $0 \leq u \leq n+r+2-b+x+i-z$;
(c) $u+v=n+r+3-b+x+i-z+t$;
(d) $v+w=i+1$.

We can rewrite the above condition in the form

$$
\begin{equation*}
\oplus_{I, J} H^{y+r-x-i-j+t}\left(Y, \Omega_{Y}^{u} \otimes \mathcal{O}_{Y}\left(d^{<I>}+d^{(J)}\right)=0\right. \tag{16}
\end{equation*}
$$

for all multi-indices I and J such that $|I|=v$ and $|J|=w$. As $m_{u} \leq$ $m_{Y}+u+1$, it follows from Lemma 3.12 that it suffices to show that

$$
d^{<I>}+d^{(J)}+y+r-x-i-j+t \geq m_{Y}+u+1 .
$$

By the Kodaira-Nakano vanishing theorem condition (16) is satisfied if $y+r-$ $x-i-j+t+u>n+r+1$. Hence we may assume that $u \leq n+x-y+i+j-t+1$. It follows from (c) that $v \geq y+r-b-j+2 t+2-z$. To obtain the strongest possible condition, we choose $j=1, t=0$ and $z=1$ to obtain the minimal
value of $v: v=y+r-b$. As $b+1-k \leq y \leq b$, we can write $y=b-s$ with $0 \leq s \leq k-1$ and $v=r-s$. From (d) we obtain that $i=r-s+w-1$, hence $u=\operatorname{dim} Y+x-b+w$. By (a) we have $y+r-x-i-j+t=b-x-w \geq 1$. In order to minimise v we choose the maximal possible value of u : we take $w=b-x-1$ and $u=\operatorname{dim} Y-1$. We then choose the minimal possible value of $w: w=0$ (and $b-x=1$). It follows that $i=r-s-1$, hence $s \leq \min (k-1, r-1) \leq \min (c-1, r-1)$. As we have ordered the degrees in such a way that $d_{0} \geq \ldots \geq d_{r}$, the strongest possible condition that we obtain is

$$
\sum_{\nu=\min (c, r)}^{r} d_{\nu} \geq m_{Y}+n+r .
$$

(ii): From (10), applied to the pair (P, ξ) with (n, b) replaced by $\left(n^{\prime}, b^{\prime}\right)$, we obtain

$$
\prime \prime \tilde{E}_{1}^{x,-y+r}(b+r) \cong \mathcal{K}_{y-r, x-y+r+1}\left(\bigwedge^{n^{\prime}+2-b^{\prime}+x} \Sigma_{P, \xi}^{\vee}, \xi_{E}\right)
$$

By (5) it suffices to show that

$$
H^{1}\left(P, \bigwedge^{y-r+1} M_{\xi} \otimes \bigwedge^{n+r+2-b+x} \Sigma_{P, \xi}^{\vee} \otimes \xi_{E}^{x-y+r}\right)=0
$$

Using the exact sequence (15) we reduce to the statement

$$
H^{1}\left(P, \bigwedge^{y-r+1} M_{\xi} \otimes \Omega_{P}^{n+r+2-b+x-z} \otimes \xi_{E}^{x-y+r}\right)=0
$$

where $0 \leq z \leq 1$. Using Lemma 3.10 (ii) we reduce to the condition

$$
H^{s+t+1}\left(Y, \bigwedge^{e} M_{E} \otimes \bigwedge^{f} E \otimes \Omega_{Y}^{u} \otimes \bigwedge^{v} E \otimes S^{w} E\right)=0
$$

for all (e, f, s, t, u, v, w) such that $s \geq 0, t \geq 0$ and
(a) $e+f=y-r+s+2$;
(b) $0 \leq e \leq y-r+1$;
(c) $u+v=n+r+3-b+x-z+t$;
(d) $v+w=x-y+r-s-1$.

We can rewrite the above condition in the form

$$
\oplus_{I, J, K} H^{s+t+1}\left(Y, \bigwedge^{e} M_{E} \otimes \Omega_{Y}^{u} \otimes \mathcal{O}_{Y}\left(d^{<I>}+d^{<J>}+d^{(K)}\right)=0\right.
$$

where I, J and K are multi-indices such that $|I|=f,|J|=v$ and $|K|=w$. It follows from Lemma 3.12 that it suffices to show that

$$
d^{<I>}+d^{<J>}+d^{(K)}+s+t+1 \geq e+m_{Y}+u+1 .
$$

To obtain the strongest possible condition of this type, we minimise v, f and w and choose the maximal possible values of e and u. To obtain the minimal value of f, we choose $e=y-r+1$ in (b), hence $f=s+1$ by (a). We take $s=0, f=1$. Define

$$
i=b+r-x .
$$

As $b-k+1 \leq x-y \leq b$ we have $i-k+1 \leq-y+r \leq i$. To obtain the minimal possible value of v, we choose $u=\operatorname{dim} Y$ in (c). We then take $z=1$ and $j=0$ to obtain $v=r-i+1$. It follows from (d) that $w=x-y+i-2 \geq b-k+i-1$. Choose $w=b-k+i-1$. We have

$$
i+y \leq k+r-1
$$

As " $\tilde{E}_{1}^{x,-y+r}(b+r)=0$ if $y<r$ we may assume that $y \geq r$. Hence $i \leq$ $k-1 \leq c-1$. We have $e=y-r+1 \leq k-i \leq c-i$. The strongest possible condition is

$$
\sum_{\nu=i}^{r} d_{\nu}+\left(b_{k}-k+i\right) d_{r} \geq m_{Y}+n+r+1+c-i
$$

As $b_{k}-k$ is constant, we can replace $b_{k}-k$ by $b_{c}-c=\mu-c$.

Remark 3.14.

(i) The expression for (C) differs from the one given in [Na2, Thm. 3]. I do not know how to obtain the bound announced in that paper. The bounds $\left(C_{i}\right)$ can be replaced by the less precise bound

$$
\begin{equation*}
(\mu-c+r+1) d_{r} \geq m_{Y}+\operatorname{dim} Y+c \tag{D}
\end{equation*}
$$

(ii) If $n-1 \leq c \leq n$ and $r=0$, the bounds of Theorem 3.13 coincide with Paranjape's bound in Theorem 2.4; in the other cases we obtain more precise bounds. In the next section we shall present some examples where the condition (C) can be dropped.
(iii) In the case $Y=\mathbb{P}^{n+r+1}$, a similar result has been obtained by Asakura and Saito [AS]; they use a different version of the Jacobi ring.
(iv) If one replaces the number $\mu=\left[\frac{n+c}{2}\right]$ by an arbitrary natural number μ such that $c \leq \mu \leq n+c$ in the conditions $\left(C_{i}\right)$ of Theorem 3.13, the same method of proof shows that $F^{\mu-c+k} H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for $0 \leq k \leq c$ (one replaces the numbers b_{k} by $\mu-c+k$ throughout the paper). Although the vanishing of $F^{\mu} H^{n+c}\left(Y_{T}, X_{T}\right)$ does not imply the vanishing of $H^{n+c}\left(Y_{T}, X_{T}\right)$ if $\mu>\left[\frac{n+c}{2}\right]$, this type of result can still be useful; see Section 4, Example 1 (d).

4 Applications

We apply the results of the previous section to compute degree bounds for Theorem 2.1 in a number of examples and present effective versions of some results on the cycle class, Abel-Jacobi and regulator maps for complete intersections that follow from Nori's theorem.

Suppose that $\left(Y, \mathcal{O}_{Y}(1)\right)$ is a smooth polarised variety that satisfies the following condition:

$$
\begin{equation*}
H^{i}\left(Y, \Omega_{Y}^{j}(k)\right)=0 \quad \text { for all } i>0, k>0 \text { and } j \geq 0 \tag{17}
\end{equation*}
$$

In this case the proof of Theorem 3.13 shows that condition (i) of Lemma 3.9 is satisfied; hence condition (C) of Theorem 3.13 can be omitted.

Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a smooth polarised variety of dimension $n+r+1$, and let $X=V\left(d_{0}, \ldots, d_{r}\right) \cap Y$ be a smooth complete intersection of dimension $n, i: X \rightarrow Y$ the inclusion map. Set $E=\mathcal{O}_{Y}\left(d_{0}\right) \oplus \ldots \oplus \mathcal{O}_{Y}\left(d_{r}\right)$ and let $g: T \rightarrow U=\mathbb{P} H^{0}(Y, E) \backslash \Delta$ be a smooth morphism.

It is known that Nori's theorem can be used to study regulator maps defined on Bloch's higher Chow groups; cf. [V2, Thm. 1.6].
Lemma 4.1. If the restriction map on Deligne-Beilinson cohomology groups

$$
H_{\mathcal{D}}^{2 p-k}\left(Y_{T}, \mathbb{Q}(p)\right) \rightarrow H_{\mathcal{D}}^{2 p-k}\left(X_{T}, \mathbb{Q}(p)\right)
$$

is surjective, the image of the (rational) regulator map

$$
c_{p, k}: \mathrm{CH}^{p}\left(X_{t}, k\right)_{\mathbb{Q}} \rightarrow H_{\mathcal{D}}^{2 p-k}\left(X_{t}, \mathbb{Q}(p)\right)
$$

is contained in the image of $i^{*}: H_{\mathcal{D}}^{2 p-k}(Y, \mathbb{Q}(p)) \rightarrow H_{\mathcal{D}}^{2 p-k}\left(X_{t}, \mathbb{Q}(p)\right)$ if $t \in T$ is very general.

Proof: One argues as in [Mul2, Thm. 6.2]; see also [GM1].

Corollary 4.2. Put $c=2 p-k-n+1$. If $c \leq n$, if condition (17) is satisfied and if the conditions $\left(C_{i}\right)$ of Theorem 3.13 are satisfied for $i=$ $0, \ldots, \min (c-1, r)$ then the image of $c_{p, k}$ is contained in $i^{*} H_{\mathcal{D}}^{2 p-k}(Y, \mathbb{Q}(p))$ if $t \in T$ is very general.

Proof: The exact sequence

$$
\begin{array}{r}
\ldots \rightarrow F^{p} H^{2 p-k}\left(Y_{T}, X_{T}\right) \oplus H^{2 p-k}\left(Y_{T}, X_{T}, \mathbb{Q}\right) \rightarrow \\
\rightarrow H_{\mathcal{D}}^{2 p-k+1}\left(Y_{T}, X_{T}, \mathbb{Q}(p)\right) \rightarrow H^{2 p-k+1}\left(Y_{T}, X_{T}\right) \rightarrow \ldots
\end{array}
$$

shows that $H_{\mathcal{D}}^{2 p-k+1}\left(Y_{T}, X_{T}, \mathbb{Q}(p)\right)=0$ if

$$
H^{2 p-k}\left(Y_{T}, X_{T}\right)=H^{2 p-k+1}\left(Y_{T}, X_{T}\right)=0 .
$$

Hence the statement follows from Theorem 3.13 and Lemma 4.1.

Remark 4.3. Let $J_{\max }^{p}(Y)$ be the intermediate Jacobian associated to the maximal \mathbb{Q}-sub Hodge structure of level one in $H^{2 p-1}(Y)$. In [GM1], Green and Müller-Stach prove a stronger version of Lemma 4.1 for $k=0$: they show that the projection of the image of the Deligne cycle class map on $\mathrm{CH}^{p}(X)_{\mathbb{Q}}$ to the quotient $H_{\mathcal{D}}^{2 p}(X, \mathbb{Q}(p)) / i^{*} J_{\text {max }}^{p}(Y)$ coincides with the image of the composed map

$$
\mathrm{CH}^{p}(Y)_{\mathbb{Q}} \rightarrow H_{\mathcal{D}}^{2 p}(Y, \mathbb{Q}(p)) \rightarrow H_{\mathcal{D}}^{2 p}(X, \mathbb{Q}(p)) / i^{*} J_{\max }^{p}(Y)
$$

Examples:

(1) $Y=\mathbb{P}^{n+r+1}$. In this case the condition (17) is satisfied by the Bott vanishing theorem.
(a): $n=2 m, k=0, p=m, c=1$. Corollary 4.2 reduces to the NoetherLefschetz theorem; cf. [D], [Sh]. As $H^{2 m}(X, \mathbb{Z})$ contains no torsion, this result even holds with integer coefficients. The method of proof gives a more precise statement, the infinitesimal Noether-Lefschetz theorem; cf. [CGGH].
(b): $n=2 m-1, k=0, p=m, c=2$. From Corollary 4.2 we deduce the following result: if $X=V\left(d_{0}, \ldots, d_{r}\right) \subset \mathbb{P}^{2 m+r}$ is a very general smooth complete intersection of dimension $2 m-1\left(m \geq 2, d_{0} \geq \ldots \geq d_{r}\right)$ and if
$\left(C_{0}\right) \sum_{i=0}^{r} d_{i}+(m-2) d_{r} \geq 2 m+r+2$
$\left(C_{1}\right) \sum_{i=1}^{r} d_{i}+(m-1) d_{r} \geq 2 m+r+1$
then the image of the Abel-Jacobi map

$$
\psi_{X}: \mathrm{CH}_{\mathrm{hom}}^{m}(X) \rightarrow J^{m}(X)
$$

is contained in the torsion points of $J^{m}(X)$. For hypersurfaces this result was proved by Green and Voisin; see [G4]. The extension to complete intersections can be found in [Na 1].
(c): $n=2 m, k=1, p=m+1, c=2$. From Corollary 4.2 we obtain the following result:

Theorem 4.4. Let $X=V\left(d_{0}, \ldots, d_{r}\right) \subset \mathbb{P}^{2 m+r+1}$ be a smooth complete intersection of dimension $2 m\left(m \geq 1, d_{0} \geq \ldots \geq d_{r}\right), i: X \rightarrow \mathbb{P}^{2 m+r+1}$ the inclusion map. If X is very general and if
$\left(C_{0}\right) \sum_{i=0}^{r} d_{i}+(m-1) d_{r} \geq 2 m+r+3$
$\left(C_{1}\right) \sum_{i=1}^{r} d_{i}+m d_{r} \geq 2 m+r+2$
the image of the (rational) regulator map

$$
c_{m+1,1}: \mathrm{CH}^{m+1}(X, 1)_{\mathbb{Q}} \rightarrow H_{\mathcal{D}}^{2 m+1}(X, \mathbb{Q}(m+1))
$$

coincides with the image of the composed map $(N=2 m+r+1)$

$$
\mathrm{CH}^{m+1}\left(\mathbb{P}^{N}, 1\right)_{\mathbb{Q}} \xrightarrow{\sim} H_{\mathcal{D}}^{2 m+1}\left(\mathbb{P}^{N}, \mathbb{Q}(m+1)\right) \rightarrow H_{\mathcal{D}}^{2 m+1}(X, \mathbb{Q}(m+1)) .
$$

As $\mathrm{CH}^{m+1}\left(\mathbb{P}^{N}, 1\right) \cong H_{\mathcal{D}}^{2 m+1}\left(\mathbb{P}^{N}, \mathbb{Z}(m+1)\right) \cong \mathbb{C}^{*}$ it follows that every element $z \in \mathrm{CH}^{m+1}(X, 1)$ is regulator decomposable up to torsion (cf. [C 2 , p. 391] for the definition). The exceptional cases include quartic surfaces and cubic fourfolds. For these cases the regulator map has been studied in [Mul2] and [C2]; in both cases the group of regulator indecomposable higher Chow cycles is non torsion, and not even finitely generated.
(d): $n=2 m-1, k=2, p=m+1, c=2$. If we apply Corollary 4.2 to this case we find the same degree bounds as in example 1 (b). The following Lemma shows that it is possible to improve these bounds (note that the first condition of the Lemma does not imply that $\left.H^{2 m+1}\left(Y_{T}, X_{T}\right)=0\right)$:

Lemma 4.5. Suppose that
(i) $F^{m+1} H^{2 m+1}\left(Y_{T}, X_{T}\right)=0$;
(ii) $F^{m} H^{2 m}\left(Y_{T}, X_{T}\right)=0$.

Then the restriction map $i^{*}: H_{\mathcal{D}}^{2 m}\left(Y_{T}, \mathbb{Q}(m+1)\right) \rightarrow H_{\mathcal{D}}^{2 m}\left(X_{T}, \mathbb{Q}(m+1)\right)$ is surjective.

Proof: Consider the commutative diagram

By (ii) we have $H^{2 m}\left(Y_{T}, X_{T}\right)=0$, hence the restriction map $H^{2 m}\left(Y_{T}\right) \rightarrow$ $H^{2 m}\left(X_{T}\right)$ is injective; its cokernel C carries an induced MHS. By strictness of the Hodge filtration we have an exact sequence

$$
0 \rightarrow F^{m+1} H^{2 m}\left(Y_{T}\right) \rightarrow F^{m+1} H^{2 m}\left(X_{T}\right) \rightarrow F^{m+1} C \rightarrow 0 .
$$

By (i) it follows that $F^{m+1} C=0$, hence $F^{m+1} C \cap C_{\mathbb{Q}}=0$ and the map r_{2} is surjective. It follows from (ii) that $H^{2 m-1}\left(Y_{T}\right) \rightarrow H^{2 m-1}\left(X_{T}\right)$ is surjective, hence the map r_{1} is also surjective, and we obtain that i^{*} is surjective.

Theorem 4.6. Let $X=V\left(d_{0}, \ldots, d_{r}\right) \subset \mathbb{P}^{2 m+r}$ be a smooth complete intersection of dimension $2 m-1\left(m \geq 1, d_{0} \geq \ldots \geq d_{r}\right), i: X \rightarrow \mathbb{P}^{2 m+r}$ the inclusion map. If X is very general and if
$\left(C_{0}\right) \sum_{i=0}^{r} d_{i}+(m-1) d_{r} \geq 2 m+r+2$
$\left(C_{1}\right) \sum_{i=1}^{r} d_{i}+m d_{r} \geq 2 m+r+1$
the image of the (rational) regulator map

$$
c_{m+1,2}: \mathrm{CH}^{m+1}(X, 2)_{\mathbb{Q}} \rightarrow H_{\mathcal{D}}^{2 m}(X, \mathbb{Q}(m+1))
$$

is zero.
Proof: Using Lemmas 4.1 and 4.5 and Remark 3.14 (iv) we find that the image of $c_{m+1,2}$ is contained in the image of

$$
i^{*}: H_{\mathcal{D}}^{2 m}\left(\mathbb{P}^{2 m+r}, \mathbb{Q}(m+1)\right) \rightarrow H_{\mathcal{D}}^{2 m}(X, \mathbb{Q}(m+1))
$$

As $H_{\mathcal{D}}^{2 m}\left(\mathbb{P}^{2 m+r}, \mathbb{Q}(m+1)\right)=0$, the image of $c_{m+1,2}$ is zero.

Remark 4.7. In $[\mathrm{C} 1,(7.14)]$ it is shown that the image of the regulator map

$$
\mathrm{CH}^{2}(C, 2) \rightarrow H_{\mathcal{D}}^{2}(C, \mathbb{Z}(2)) \cong H^{1}\left(C, \mathbb{C}^{*}\right)
$$

is torsion for a very general smooth plane curve C of degree $d \geq 4$; this corresponds to the case $m=1, r=0$.
(e): $r=0, c=n$. Let X_{U} be the universal family of smooth hypersurfaces of degree d_{0} in \mathbb{P}^{n+1}. It follows from Theorem 3.13 that $H^{2 n}\left(\mathbb{P}_{U}^{n+1}, X_{U}\right)=0$ if $d_{0} \geq 2 n+1$. Voisin [V3] has constructed a higher Chow cycle cycle $Z_{U} \in$ $\mathrm{CH}^{n}\left(X_{U}, 1\right)$ for the universal family X_{U} of hypersurfaces of degree $2 n$ such that its image under the cycle class map

$$
\mathrm{CH}^{n}\left(X_{U}, 1\right)_{\mathbb{Q}} \rightarrow H^{2 n-1}\left(X_{U}, \mathbb{Q}\right)
$$

is not in the image of the restriction map

$$
H^{2 n-1}\left(\mathbb{P}_{U}^{n+1}, \mathbb{Q}\right) \rightarrow H^{2 n-1}\left(X_{U}, \mathbb{Q}\right)
$$

Hence $H^{2 n}\left(\mathbb{P}_{U}^{n+1}, X_{U}\right) \neq 0$ if $d_{0}=2 n$; this shows that the bound $d_{0} \geq 2 n+1$ is optimal.
(2) Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a polarised abelian variety. As the tangent bundle T_{Y} is trivial, condition (17) is satisfied by the Kodaira vanishing theorem. As Ω_{Y}^{m} is trivial for all m, the proof of Theorem 3.13 shows that we can substract $m_{Y}+\operatorname{dim} Y+1$ on the right hand side of the inequality of condition $\left(C_{i}\right)$. Hence condition $\left(C_{i}\right)$ can be replaced by the weaker condition

$$
\left(C_{i}^{\prime}\right) \sum_{\nu=i}^{r} d_{\nu}+(\mu-c+i) d_{r} \geq c-i-1 .
$$

This condition is empty if $c \leq 2$. For $c=1$ we obtain a Noether-Lefschetz type result for complete intersections in abelian varieties that can be proved directly using monodromy arguments.

To state the result that is obtained for $c=2$, we introduce some notation. Let Y be a polarised abelian variety, and let X be a smooth complete intersection in Y of dimension $2 m-1$. Let $\operatorname{Hdg}_{\mathrm{pr}}^{m}(Y)_{\mathbb{Q}}$ be the group of primitive Hodge classes of type (m, m) on Y, and let $J_{\text {var }}^{m}(X)$ be the intermediate Jacobian associated to $H_{\mathrm{var}}^{2 m-1}(X)$. From the commutative diagram

$$
\begin{array}{rllllll}
0 & \rightarrow J^{m}(Y)_{\mathbb{Q}} & \rightarrow H_{\mathcal{D}}^{2 m}(Y, \mathbb{Q}(m)) & \rightarrow & \operatorname{Hdg}^{m}(Y)_{\mathbb{Q}} & \rightarrow & 0 \\
\downarrow i^{*} & & \downarrow i^{*} & & \downarrow i^{*} \\
0 & \rightarrow J^{m}(X)_{\mathbb{Q}} & \rightarrow & H_{\mathcal{D}}^{2 m}(X, \mathbb{Q}(m)) & \rightarrow & \operatorname{Hdg}^{m}(X)_{\mathbb{Q}} & \rightarrow
\end{array}
$$

we obtain a map

$$
\psi: \operatorname{Hdg}_{\mathrm{pr}}^{m}(Y)_{\mathbb{Q}} \rightarrow J_{\mathrm{var}}^{m}(X)_{\mathbb{Q}}
$$

by lifting a primitive Hodge class on Y to $H_{\mathcal{D}}^{2 m}(Y, \mathbb{Q}(m))$ and restricting to X. By passage to the quotient, the Abel-Jacobi map ψ_{X}^{m} induces a map

$$
\overline{\psi_{X}^{m}}: \mathrm{CH}_{\mathrm{hom}}^{m}(X)_{\mathbb{Q}} \rightarrow J_{\mathrm{var}}^{m}(X)_{\mathbb{Q}} .
$$

Theorem 4.8. Let $\left(Y, \mathcal{O}_{Y}(1)\right)$ be a polarised abelian variety and let X be a smooth complete intersection in Y of dimension $2 m-1$. If X is very general, the image of $\overline{\psi_{X}^{m}}$ is contained in the image of the map

$$
\psi: \operatorname{Hdg}_{\mathrm{pr}}^{m}(Y)_{\mathbb{Q}} \rightarrow J_{\mathrm{var}}^{m}(X)_{\mathbb{Q}} .
$$

Proof: This follows from Corollary 4.2 if we take $c=2, k=0, p=m$ and use the improved conditions $\left(C_{i}^{\prime}\right)$.
(3) The condition (17) is also satisfied if $\left(Y, \mathcal{O}_{Y}(1)\right)$ is a smooth polarised toric variety, by the Bott-Danilov-Steenbrink vanishing theorem; see [BC, Thm. 7.1].
(4) We consider an example mentioned in the introduction of Nori's paper. Let $Y \subset \mathbb{P}^{7}$ be a smooth quadric, and let $X=Y \cap V\left(d_{0}, d_{1}\right), d_{0} \geq d_{1}$, be a smooth complete intersection in Y. In this case condition (17) is not satisfied. As $m_{Y}=1$ [Pa], Paranjape's results show that $H^{n+k}\left(Y_{T}, X_{T}\right)=0$ for $k \leq 3$ if $d_{1} \geq 9$. As $c=3$ and $r=1$, the conditions of Theorem 3.13 read $(C): d_{1} \geq 6,\left(C_{0}\right): d_{0}+d_{1} \geq 10,\left(C_{1}\right): 2 d_{1} \geq 9$. Using precise vanishing theorems for the groups $H^{i}\left(Y, \Omega_{Y}^{j}(k)\right)(c f .[\mathrm{Sn}])$, we find that the bound in condition (C) can be improved to $d_{1} \geq 5$.

Let Griff ${ }^{3}(X)$ be the Griffiths group of codimension 3 cycles on X. Using [No, Thm. 1] it follows that $\operatorname{Griff}^{3}(X) \otimes \mathbb{Q} \neq 0$ if X is very general and $d_{1} \geq 5$. Bloch and Srinivas have proved that $\operatorname{Griff}^{3}(X) \otimes \mathbb{Q}=0$ if X is a smooth Fano fourfold; see [BS, Thm. 2(i)]. Hence $\operatorname{Griff}^{3}(X) \otimes \mathbb{Q}=0$ if $d_{0}+d_{1}<6$.
Acknowledgements. I would like to thank V. Mouroukos, J.P. Murre and C. Peters for suggestions and helpful discussions. I am indebted to the referee for his careful reading of the paper; he pointed out two mistakes in previous versions. Special thanks go to Stefan Müller-Stach for his comments, his encouragement and his help in solving the problem concerning the comparison of two spectral sequences in Section 3.

References

[A] M. Atiyah, Complex analytic connections in fibre bundles, Trans. AMS 85 (1957), 181-207.
[AS] M. Asakura and S. Saito, Filtration on Chow groups and generalized normal functions, preprint, 1996.
[BC] V.V. Batyrev and D.A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), 293-338.
[BS] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Am. J. Math. 105 (1983), 1235-1253.
[BM] R. Braun and S. Müller-Stach, Effective bounds for Nori's connectivity theorem, in: Higher dimensional complex varieties. Proceedings of the international conference, Trento, Italy, Walter de Gruyter (1996), 83-88.
[C1] A. Collino, Griffiths' infinitesimal invariant and higher K-theory on hyperelliptic jacobians, J. Algebraic Geometry 6 (1997), 393-415.
[C2] A. Collino, Indecomposable motivic cohomology classes on quartic surfaces and on cubic fourfolds, in: Algebraic K-theory and its applications (Trieste, 1997), 370-402, World Sci. Publishing, River Edge, NJ, 1999.
[CGGH] J. Carlson, M. Green, P. Griffiths and J. Harris, Infinitesimal variation of Hodge structures, Comp. Math. 50 (1983), 109-205.
[D] P. Deligne, Le théorème de Noether, Exposé XIX dans: P. Deligne et N. Katz, Groupes de Monodromie en Géométrie Algébrique, SGA 7II, Lecture Notes in Math. 340, Springer-Verlag (1973).
[DD] P. Deligne and A. Dimca, Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singulières, Ann. Sci. ENS 23 (1990), 645-656.
[ENS] H. Esnault, M.V. Nori and V. Srinivas, Hodge type of projective varieties of low degree, Math. Ann. 293 (1992), 1-6.
[FH] W. Fulton and J. Harris, Representation theory. A first course, Graduate Texts in Math. 129, Springer-Verlag (1991).
[G1] M. Green, The period map for hypersurface sections of high degree of an arbitrary variety, Comp. Math. 55 (1984), 135-156.
[G2] M. Green, Koszul cohomology and geometry, in: Lectures on Riemann surfaces, Trieste, Italy, World Scientific Press (1987), 177-200.
[G3] M. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Diff. Geom. 27 (1988), 155-159.
[G4] M. Green, Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. Diff. Geom. 29 (1989), 545-555.
[G5] M. Green, Infinitesimal methods in Hodge theory, in: Algebraic cycles and Hodge theory, Lecture Notes in Math. 1594, Springer-Verlag (1994).
[Gr] A. Grothendieck, On the De Rham cohomology of algebraic varieties, Publ. Math. IHES 29 (1969), 460-495.
[GM1] M. Green and S. Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree, Comp. Math. 100 (1996), 305-309.
[GM2] M. Green and S. Müller-Stach, Algebraic cycles on a general hypersurface section of high degree of a smooth projective variety, manuscript.
[K] S. Kleiman, The enumerative theory of singularities, in: Real and complex singularities, Oslo 1976 (P. Holm, ed.), Slijthoff \& Noordhoff.
[Mul1] S. Müller-Stach, On the nontriviality of the Griffiths group, J. Reine Angew. Math. 427 (1992), 209-218.
[Mul2] S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geometry 6 (1997), 513-543.
[Mum] D. Mumford, Abelian varieties, TIFR Studies in Mathematics 5, London: Oxford University Press (1974).
[Na1] J. Nagel, The Abel-Jacobi map for complete intersections, Indag. Math. 8 (1997), 95-113.
[Na2] J. Nagel, Effective bounds for Nori's connectivity theorem, Comptes Rendus Acad. Sci. Paris, t. 327, Série I, 189-192 (1998).
[No] M.V. Nori, Algebraic cycles and Hodge-theoretic connectivity, Inv. Math. 111 (1993), 349-373.
[Pa] K. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. 140 (1994), 641-660.
[Pe] D. Perkinson, Curves in Grassmannians, Trans. of the AMS 347 (1995), 3179-3246.
[R] M.S. Ravi, An effective version of Nori's theorem, Math. Z. 214 (1993), 1-7.
[Sh] T. Shioda, Algebraic cycles on hypersurfaces in \mathbb{P}^{n}, Adv. Studies in Pure Math. 10 (1987), Algebraic Geometry Sendai 1985, North Holland Publ. (1987), 717-732.
[Sn] D. Snow, Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces, Math. Ann. 276 (1987), 159-176.
[SSU] M.-H. Saito, Y. Shimizu and S. Usui, Variation of mixed Hodge structure and Torelli problem, in: Advaced Studies in Pure Math. 10, Algebraic Geometry Sendai 1985, North Holland Publ. (1987), 649-693.
[V1] C. Voisin, Transcendental methods in the study of algebraic cycles, in: Algebraic cycles and Hodge theory, Lecture Notes in Math. 1594, Springer-Verlag (1994).
[V2] C. Voisin, Variations of Hodge structure and algebraic cycles, in: Proceedings of the ICM Zürich 1994 (S.D. Chatterji, ed.), Basel: Birkhäuser (1995), vol. I, 706-715.
[V3] C. Voisin, Théorème de connexité de Nori et groupes de Chow supérieurs, lecture at Paris VI, october 2000.
[W] G.E. Welters, Polarized abelian varieties and the heat equations, Comp. Math. 49 (1983), 173-194.

Université Lille 1, Mathématiques - Bât. M2, F-59655 Villeneuve d'Ascq Cedex, France
email: nagel@agat.univ-lille1.fr

