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Abstract. We construct a relative Chow-Künneth decomposition for a conic bundle

over a surface such that the middle projector gives the Prym variety of the associated

double covering of the discriminant of the conic bundle. This gives a refinement (up to

an isogeny) of Beauville’s theorem on the relation between the intermediate Jacobian

of the conic bundle and the Prym variety of the double covering.

Introduction

Let f : X → S be a conic bundle over a surface, i.e., X is a smooth projective threefold
over k, S is a projective surface over k and the fibers of f are conics, where k is a perfect
field of characteristic different from 2. Let C be the discriminant of f ; it is a curve whose
singularities are ordinary double points, see [3]. (Here C is not necessarily connected.) The
singularities of C are the points s ∈ S such that f−1(s) is a double line. Put XC = f−1(C),

and let X̃C be its normalization (which is smooth). Let C̃ denote F1(XC/C) the relative
Fano scheme of lines of XC over C (i.e. its fiber over s ∈ C consists of the irreducible

components of f−1(s)). In [3, 0.3] it is shown that the morphism C̃ → C is an admissible
double covering, i.e., it is an étale double covering outside Sing (C) and the inverse image

of a double point of C is a double point of C̃. Let D and C′ denote respectively the
normalizations of C̃ and C (which are denoted respectively by Ñ and N in [3], [6]). Let
Cj be the irreducible components of C. Let C′

j be the normalization of Cj , and Dj be the
union of the irreducible components of D whose image in C is Cj . Suppose that each Dj is

irreducible, i.e. the restriction of the double covering C̃ → C over Cj \Sing C is nontrivial.
If k is not algebraically closed, we assume this after taking the base change k → k̄.

Let PX be the generalized Prym variety associated to the double covering C̃ → C, as
defined in [3, 0.3.2]. Then PX is isogenous to the product of the Prym varieties of Dj/C′

j ,
see [3], Prop. 0.3.3 (cf. also [6, Prop. 1.5]). Let σj be the involution of Dj associated to
the double covering

ρj : Dj → C′
j .

This gives an idempotent

π̃j := (id − σj)/2 ∈ Cor0k(Dj , Dj) = CH1(Dj ×k Dj)Q,
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where σj is identified with its graph. We define a Chow motive, called the Prym motive,
by

Prym(Dj/C′
j) := (Dj , π̃j).

It is identified with the Prym variety of Dj/C′
j by Weil’s theory of correspondences between

curves. Let hi(X), hi(S) denote the i-th component of the Chow-Künneth decomposition,
where the existence of hi(S) was proved in [17] (see also [18]). Let ℓ be a prime different
from the characteristic of k, and let CHp

alg(X)Q be the subgroup of CHp(X)Q consisting
of cycles algebraically equivalent to zero. The following gives a generalization of [3], [6],
and has been conjectured by the first author [19].

Theorem 1. There is a self-dual Chow-Künneth decomposition for X together with the

isomorphisms of Chow motives

hi(X) ∼=

{
h3(S) ⊕ h1(S)(−1) ⊕ (

⊕
j Prym(Dj/C′

j)(−1)) if i = 3,

hi(S) ⊕ hi−2(S)(−1) if i 6= 3,

where (−1) denotes the Tate twist of Chow motives. In particular, if H1(Sk̄,Qℓ) = 0 or

equivalently CH1
alg(Sk̄)Q = 0, then

h3(X) =
⊕

j Prym(Dj/C′
j)(−1).

Theorem 1 gives a refinement (up to an isogeny) of a theorem of Beauville [3] in the
case of conic bundles over P2

C with smooth C, where he gave an isomorphism between
the intermediate Jacobian of X and the Prym variety PX of D/C as principally polarized
abelian varieties over C. Note that Theorem 1 in the case k = C implies an isomorphism
of Q-Hodge structures

H3(X) = H3(S) ⊕ H1(S)(−1) ⊕ (
⊕

jCoker(H1(C′
j) → H1(Dj))(−1)).

To show Theorem 1, we consider the relative Chow-Künneth decomposition for f (see
[9], [14], [15], [22]) in the ’weak’ and ’strong’ sense (see 1.6 for notation), and prove the
following (which has been studied in [19]).

Theorem 2. There is a unique self-dual relative Chow-Künneth decomposition for f in

the weak sense, and the projectors πf,−1, πf,0 and πf,1 define Chow motives isomorphic

to (S, ∆S),
⊕

j Prym(Dj/C′
j)(−1) and (S, ∆S)(−1) respectively, where ∆S is the diagonal

of S × S. Moreover, there is a unique self-dual relative Chow-Künneth decomposition for

f in the strong sense, and the relative projector πf,0,j corresponding to the direct factor

supported on Cj defines a Chow motive isomorphic to Prym(Dj/C′
j)(−1).

The proof of Theorem 2 follows from a calculation of the composition of certain
relative correspondences by decomposing these into the compositions of more elementary
correspondences. Here we have to show the vanishing of certain ‘phantom’ motives. The
construction of the middle projector is due to the first author [19].

From Theorem 2 we can deduce the following generalization of [3], Th. 3.6 (where
k = k̄ and S = P2) and [6], Th. 2.6 (where k = k̄, char k = 0 and C is irreducible).
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Corollary 1. There is a canonical isomorphism

CH2
alg(X)Q = CH2

alg(S)Q ⊕ CH1
alg(S)Q ⊕PX(k)Q.

In particular, if H1(Sk̄,Qℓ) = 0 or equivalently CH1
alg(Sk̄)Q = 0, then

CH2
alg(X)Q = CH2

alg(S)Q ⊕ PX(k)Q.

If furthermore CH2(S)Q = Q, then

CH2
alg(X)Q = PX(k)Q.

In case k = k̄ and char k = 0, the condition CH2(S)Q = Q implies Hi(S,OS) = 0 for
i = 1, 2, see [16]. Its converse was conjectured by S. Bloch [7], and has been proved at
least if S is not of general type, see [8] and also [2], etc.

In Section 1 we review some basic facts related to conic bundles and Chow-Künneth
decompositions. In Section 2 we prove the main theorems.

This paper grew out of several discussions between the authors. We would like to
thank J. Murre for useful discussions and giving us the opportunity of the discussions.

1. Preliminaries

1.1. Conic bundles. Let f : X → S be a conic bundle with dimX = 3 and dimS = 2.
Let C be the discriminant. It is a divisor with normal crossings, see [3]. Locally X is a
subvariety of U × P2 defined by a relative quadratic form where U is an open subvariety
of S. Note that Xs := f−1(s) is a union of two lines (resp. a line) in P2 if s is a smooth

(resp. singular) point of C. Let XC = f−1(C), and let X̃C be its normalization. Let C′ be

the normalization of C. Then X̃C is smooth, and is a P1-bundle over a double covering D
of C′ (its fibers are lines in P2 locally).

Let Cj be the irreducible components of C. Let C′
j be the normalization of Cj ,

and Dj be the union of the irreducible components of D whose image in C is Cj . Put
Co

j = Cj \ SingC. In the sequel we shall identify Co
j with the corresponding subset of the

normalization C′
j . Let

ρj : Dj → C′
j

be the double covering, and put Do
j = ρ−1

j (Co
j ). We assume that the Dj are irreducible,

i.e.

(1.1.1) The restriction Do
j → Co

j is a nontrivial double covering for all j.

In case k is not algebraically closed, we assume (1.1.1) after taking the base change k → k̄.
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1.2. Example. Let Ej be line bundles on S, and aj be sections of Ej ⊗Ej for j = 0, 1, 2.
Assume the zeros of aj are smooth divisors Cj and their union C is a divisor with normal
crossings on S. Then these define a conic bundle f : X → S such that X is locally defined
by ∑

0≤j≤2 ajx
2
j = 0 in U × P2,

trivializing Ej locally over an open subvariety U of S. The condition (1.1.1) is satisfied if
Cj ∩ Sing C 6= ∅ for any j, see (1.3.4) below.

1.3. Decomposition theorem. With the notation and the assumptions of (1.1) assume
k is algebraically closed. Let ιj : Co

j := Cj \ Sing C → Cj denote the inclusion. By [5]
there is a noncanonical isomorphism

(1.3.1) Rf∗Ql,X [3] ≃
⊕

−1≤i≤1
pRif∗(Ql,X [3])[−i] in Db

c(S,Ql),

together with canonical isomorphisms

(1.3.2)

pR−1f∗(Ql,X [3]) = Ql,S [2], pR1f∗(Ql,X [3]) = Ql,S(−1)[2],
pR0f∗(Ql,X [3]) =

⊕
j(ιj)∗Lj [1].

Here Lj is the restriction to Co
j of ((ρj)∗Qℓ,Dj

/Qℓ,C′

j
)(−1) with ρj : Dj → C′

j the natural

morphism. It is a smooth Qℓ-sheaf of rank 1. See [5] for the definition of Db
c(S,Qℓ) and

pRif∗ := pHiRf∗. Note that

(1.3.3) Condition (1.1.1) is equivalent to Γ(Co
j , Lj) = 0 for any j.

Since the fiber of f at s ∈ Cj \Co
j is a line, the stalk of (ιj)∗Lj at s ∈ Cj \Co

j vanishes and
hence (ιj)∗Lj = (ιj)!Lj , i.e. the local monodromy of Lj around s is nontrivial. So we get

(1.3.4) Condition (1.1.1) is satisfied if Cj ∩ Sing C 6= ∅ for any j.

Note that the last condition is equivalent to that any connected component of C has a
singular point.

1.4. Chow motives. Let X, Y be smooth projective varieties over a perfect field k.
Assume X is equidimensional. Then the group of correspondences is defined by

(1.4.1) Cori
k(X, Y ) = CHdim X+i(X ×k Y )Q.

In general, we take the direct sum over the connected components of X . A Chow motive

is defined by (X, π, i) where π ∈ Cor0k(X, X) is an idempotent (i.e. π2 = π) and i ∈ Z.
Note that i is related to morphisms of Chow motives which are defined by

(1.4.2) Hom((X, π, i), (Y, π′, j)) = π′ ◦Corj−i
k (X, Y ) ◦π.

Sometimes we denote (X, π, 0) by (X, π). The Tate twist of Chow motives is defined by

(1.4.3) (X, π, i)(m) = (X, π, i + m).
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Similarly we can define relative Chow motives (see [9], [12]) using relative correspon-
dences defined as below.

1.5. Relative correspondences. Let X, Y be smooth varieties over a perfect field k with
projective morphisms f : X → S, g : Y → S over k. The group of relative correspondences
is defined by

(1.5.1) Cori
S(X, Y ) = CHdim Y −i(X ×S Y )Q,

if Y is equidimensional. In general we take the direct sum over the connected components of
Y . The composition of relative correspondences is defined by using the pull-back associated
to the cartesian diagram

X ×S Y ×S Z → (X ×S Y ) ×k (Y ×S Z)
↓ ↓
Y → Y ×k Y,

together with the pushforward by X×S Y ×S Z → X×S Z, see [9], [13]. There is a natural
morphism

(1.5.2) Cori
S(X, Y ) → Cori

k(X, Y ),

which is compatible with composition. This induces a forgetful functor from the category
of relative Chow motives over S to the category of Chow motives over k, see [9].

If k = k̄ we have the action of correspondences

(1.5.3)
Cori

S(X, Y ) → Hom(Rf∗Ql,X ,Rg∗Ql,Y (i)[2i])

→
⊕

jHom(pRjf∗Ql,X , pRj+2ig∗Ql,Y (i)).

This is compatible with the composition of correspondences, see loc. cit.

1.6. Relative Chow-Künneth decomposition. With the notation and the assumptions
of (1.3), assume there are mutually orthogonal idempotents

πf,i ∈ Cor0S(X, X) = CH1(X ×S X)Q for i = −1, 0, 1,

such that
∑

i πf,i = ∆X where ∆X denotes the diagonal. We say that they define a
relative Chow-Künneth decomposition for f in the weak sense if the action of πf,i on
pRjf∗(Ql,X [3]) is the identify for i = j, and vanishes otherwise, see [22]. In case k is
not algebraically closed, we say that mutually orthogonal idempotents define a relative
Chow-Künneth decomposition if their base changes by k → k̄ do.

Let πf,i be mutually orthogonal relative projectors defining a relative Chow-Künneth
decomposition for f , and πf,0,j be mutually orthogonal relative projectors such that πf,0 =∑

j πf,0,j. (Note that πf,i ◦ πf,0,j = πf,i ◦πf,0 ◦πf,0,j = 0 for i = ±1.) We say that they
define a relative Chow-Künneth decomposition for f in the strong sense if the action of πf,0,j

on the direct factor supported on Cj′ is the identify for j = j′, and vanishes otherwise, see
[9], [14]. In case k is not algebraically closed, the above condition should be satisfied for
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the base change by k → k̄, where the direct factor supported on Cj′ should be replaced by
the direct factor supported on the base change of Cj′ .

We say that a decomposition is self-dual if the projectors satisfy the self-duality

πf,i = tπf,−i and πf,0,j = tπf,0,j (in the strong case).

1.7. Heuristic argument. With the notation and the assumptions of (1.3), assume that
the decomposition (1.3.1) holds in the derived category of (conjectural) motivic sheaves
DbM(S) (see [4]) where the following isomorphism should hold:

(1.7.1) EndDbM(S)(Rf∗Q
M
X [3]) = Cor0S(X, X) (:= CH1(X ×S X)Q).

Here QM
X ∈ DbM(X) is the constant sheaf. (In case k = C we may assume M(X) =

MHM(X), see Remark (1.8) below.) Then (1.3.1) and (1.7.1) should induce a relative
Chow-Künneth decomposition in the weak sense by taking the projection to each direct
factor. If we have another relative Chow-Künneth decomposition in the weak sense, then
the corresponding projectors πf,i are identified with endomorphisms

πf,i : Rf∗Q
M
X [3] → Rf∗Q

M
X [3],

and (1.3.1) gives a decomposition πf,i =
⊕

r,s(πf,i)r,s such that (πf,i)r,s is identified with

(πf,i)r,s ∈ Exts−r(pRsf∗(Q
M
X [3]), pRrf∗(Q

M
X [3])) (i, r, s ∈ {−1, 0, 1}).

In particular, (πf,i)r,s = 0 for r > s. We have also

(πf,i)i,i = id, and (πf,i)r,r = 0 for i 6= r (i, r ∈ {−1, 0, 1}).

By condition (1.3.3) we have moreover

(πf,i)r,s = 0 if s − r = 1.

Indeed, for (r, s) = (0, 1) we have

Ext1(Ql,S(−1)[2],
⊕

j(ιj)∗Lj [1]) =
⊕

jH
0(Co

j , Lj)(1) = 0.

For (r, s) = (−1, 0), we can use duality since Lj(1) is self-dual. So we get for i = −1, 0, 1

πf,i = (πf,i)i,i + (πf,i)−1,1.

It is then easy to see that the condition πf,0 ◦πf,0 = πf,0 implies

(πf,0)−1,1 = 0, i.e. πf,0 = (πf,0)0,0.

In particular, πf,0 is unique. Note that (πf,1)−1,1 + (πf,−1)−1,1 = 0 by πf,−1 ◦ πf,1 = 0,
and (πf,i)−1,1 for |i| = 1 gives the ambiguity of the decomposition. Indeed, for any
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η ∈ Ext2(Ql,S(−1)[2],Ql,S[2]), we can replace πf,1, πf,−1 with πf,1 + η and πf,−1 − η re-
spectively. (If we assume the self-duality of the decomposition, this imposes some condition
on the ambiguity.)

1.8. Remark. In case the base field is C, the above argument can be justified. Indeed,
let dX = dim X and Y = X ×S X with the projections pri : Y → X . Let DY denote the
dualizing complex. Then, using the adjunction and the base change in [20], we have the
isomorphisms (see also [9])

EndDbMHM(S)(Rf∗QX) = HomDbMHM(X)(QX , f !Rf∗QX)

= HomDbMHM(X)(QX ,R(pr1)∗pr!
2QX)

= HomDbMHM(Y )(pr∗1QX , pr!
2QX)

= Ext−2dX

DbMHS
(Q,RΓ(Y,DY (−dX)).

Here MHS and MHM(X) denote respectively the categories of polarizable mixed Hodge
structures [10] and mixed Hodge modules on X [20]. We have moreover the following

1.9. Proposition. Let Y be a complex algebraic variety such that dim Sing Y ≤ dY − 2
where dY = dim Y . Then we have an isomorphism

CH1(Y )Q = Ext2−2dY

DbMHS
(Q,RΓ(Y,DY (1 − dY )).

Proof. Let Z = Sing Y and U = Y \Z with the inclusions i : Z → Y and j : U → Y . Since
dim Z ≤ dimY − 2, we have

CH1(Y ) = CH1(U).

On the other hand, there is a distinguished triangle in DbMHM(Y )

i∗DZ → DY → Rj∗DU →,

inducing a long exact sequence of extension groups Exti
DbMHS(Q,RΓ(Y, ∗)), and

Ext−i
DbMHS

(Q,RΓ(Z,DZ(1 − dY )) = 0 for i > 2 dimZ,

since
HBM

i (Z) = H−i(Z,DZ) = 0 for i > 2 dimZ.

So the assertion is reduced to the smooth case, and follows from [21], Prop. 3.4. This
finishes the proof of Proposition (1.9).
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2. Proof of main theorems

2.1. Lemma. With the notation of (1.5), assume f, g are flat. Set n = dim X − dim S.

Let ξ ∈ Cori
S(X, S) = CHn+i(X)Q and ξ′ ∈ Corj

S(S, Y ) = CHj(Y )Q. Let pr1 : X ×S

Y → X and pr2 : X ×S Y → Y denote the projections. Then the composition ξ′ ◦ ξ ∈
Cori+j

S (X, Y ) = CHn+i+j(X ×S Y )Q is given by pr∗1ξ if ξ′ = [Y ], and pr∗2ξ′ if ξ = [X ].

Proof. The flatness of f, g implies that X ×S Y → X ×k Y is a regular embedding and
the pri are flat. Moreover, we have locally a regular sequence defining X ×S Y in X ×k Y
and it is a regular sequence for the pull-back by X ×k Y → Y of any OY -module. The
last assertion follows from the flatness of pr2 together with the theory of regular sequences
(see e.g. [23], p. 71) since the Koszul complex calculates the pull-back by the embedding
X ×S Y → X ×k Y . So the assertion follows.

2.2. Lemma. With the notation of (1.5), let ξ ∈ Cori
S(S, X) = CHi(X)Q and ξ′ ∈

Corj
S(X, S) = CHj+n(X)Q where n = dimX − dimS. Then ξ′ ◦ ξ ∈ Cori+j

S (S, S) =
CHi+j(S)Q is given by f∗(ξ · ξ

′) ∈ CHi+j(S)Q, where ξ · ξ′ is the intersection of cycles on

X.

Proof. This immediately follows from the definition of the composition in (1.5).

2.3. Lemma. With the notation of (1.1), let ξ, ξ′ ∈ Cor0S(X, X) = CH1(X ×S X)Q which

are represented by cycles supported in the inverse images of curves C and C′ respectively

on S. Assume dim C ∩ C′ ≤ dim S − 2 or one of the cycles belongs to pr∗CH1(S)Q where

pr : X ×S X → S is the projection. Then their composition vanishes.

Proof. If the second assumption is satisfied, we may assume that dimC ∩ C′ ≤ dim S − 2
by the moving lemma on S, since one of the cycles comes from S. Then the composition in
CH1(X ×S X)Q is represented by a cycle supported in the inverse image of C ∩ C′ which
has codimension 2. So it vanishes. This finishes the proof of Lemma (2.3).

2.4. Proof of Theorem 2. We first assume that k is algebraically closed. Take any
ξ ∈ CH1(X)Q such that f∗ξ = [S], i.e. its restriction to the generic fiber of f is a zero-
cycle of degree 1. The ambiguity of ξ is given by f∗η for η ∈ CH1(S)Q since f−1(D) is
irreducible for any irreducible curve D on S by (1.1.1). If s /∈ Sing C, there is an open
neighborhood U of s such that the restriction of ξ over U is represented by [Z]/2, where
Z is finite étale of degree 2 over U since f is a conic bundle. Set

p = pr∗1ξ ∈ Cor0S(X, X) = CH1(X ×S X)Q so that tp = pr∗2ξ,

where pri is the i-th projection. By Lemma (2.1), we have

p = [X ] ◦ ξ.

where ξ ∈ Cor0S(X, S) = CH1(X)Q and [X ] ∈ Cor0S(S, X) = CH0(X)Q. Then p and tp are
idempotents since we have by Lemma (2.2)

(2.4.1) ξ ◦ [X ] = id ∈ Cor0S(S, S).
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We have tp ◦ p = 0 since t[X ] ◦ [X ] = 0 in Cor−1
S (S, S) = 0. Note that p ◦ tp = pr∗η with

η = f∗(ξ · ξ) ∈ CH1(S)Q by Lemmas (2.1) and (2.2), where pr : X ×S X → S is the
projection. So we can define

πf,−1 = p ◦ (1 − tp/2), πf,1 = (1 − p/2) ◦ tp.

Indeed, setting πf,−1 = p ◦ (1−a tp) and πf,1 = (1−b p) ◦ tp with a, b ∈ Q, we get a+b = 1
from the condition πf,−1 ◦πf,1 = 0, and a = b = 1/2 from the self-duality. Note that πf,−1

and πf,1 are still of the form pr∗1ξ and pr∗2ξ respectively, replacing ξ with ξ − f∗η/2. So
we get isomorphisms of relative Chow motives

(2.4.2) (X, πf,−1) = (S, ∆S), (X, πf,1) = (S, ∆S)(−1),

induced by ξ ∈ Cor0S(X, S) and t[X ] ∈ Cor−1
S (X, S) with inverse [X ] ∈ Cor0S(S, X) and

tξ ∈ Cor1S(S, X) respectively.

Let X̃j ⊂ X̃C be the inverse image of Cj and let gj : X̃j → X , pj : X̃j → Dj be
natural morphisms. Set

γj := (pj)∗ ◦ (gj)
∗ ∈ Cor−1

S (X, Dj), γ′
j := −tγj/2 ∈ Cor1S(Dj , X).

Let σj be the involution of Dj associated with the double covering Dj/C′
j . This is identified

with a cycle defined by its graph. The projector πf,0,j corresponding to C′
j is defined as

in [19] by
πf,0,j = γ′

j ◦ π̃j ◦ γj with π̃j := (id − σj)/2.

This is represented by a cycle supported in pr−1(Cj), but does not belong to pr∗CH1(S)Q.

More precisely, X̃j×SX̃j has two irreducible components corresponding to the compositions
of correspondences

(pj)
∗ ◦ id ◦ (pj)∗ and (pj)

∗ ◦σj ◦ (pj)∗.

Taking further the composition with (gj)
∗ and (gj)∗, we get the pushforward of these cycles

by gj .
By Proposition (2.5) below, γj ◦ tγj ∈ Cor0S(Dj , Dj) = Cor0Co

j
(Do

j , D
o
j ) is expressed by

the matrix

A :=

(
−1 1
1 −1

)
.

Here Do
j → Co

j is the restriction of ρj : Dj → C′
j over Co

j ; it is étale of degree 2.
On the other hand, π̃j := (id − σj)/2 is expressed by the matrix

−
1

2
A =

(
1/2 −1/2
−1/2 1/2

)

and is an idempotent since A2 = −2A. Then πf,0,j is an idempotent using Proposition (2.5)
below. We have moreover

πf,0,j ◦ γ′
j ◦ π̃j ◦ γj ◦πf,0,j = πf,0,j, π̃j ◦ γj ◦ πf,0,j ◦ γ′

j ◦ π̃j = π̃j .
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This induces an isomorphism of relative Chow motives over S

(2.4.3) (X, πf,0,j) = Prym(Dj/C′
j)(−1).

Then, using the compatibility of (1.5.3) with the composition of correspondences, we get

(πf,0,j)∗(
pR0f∗(Ql,X [3])) = (ιj)∗Lj[1] in pR0f∗(Ql,X [3]),

i.e. the action of the idempotent πf,0,j on (ιj′)∗Lj′ [1] ⊂ pR0f∗(Ql,X [3]) is the identity if
j = j′, and vanishes otherwise. The action of πf,0,j on pRif∗(Ql,X [3]) vanishes for |i| = 1,
since πf,0,j is supported in the inverse image of Cj . Moreover it follows from Lemma (2.3)
that

πf,0,j ◦ πf,0,j′ = 0 for j 6= j′.

So we get the middle projector
πf,0 :=

⊕
j πf,0,j.

Now we have to show

πf,0,j ◦πf,i = πf,i ◦πf,0,j = 0 for |i| = 1,(2.4.4)

ζ := 1 −
∑

−1≤i≤1 πf,i = 0 in Cor0S(X, X).(2.4.5)

For (2.4.4) it is enough to show πf,0,j ◦πf,i = 0 by duality. Consider the composition of

tξ ∈ Cor1S(S, X) and (id − σj) ◦ γj ∈ Cor−1
S (X, Dj) in Cor0S(S, Dj) = CH0(Dj)Q.

Since Dj is irreducible by hypothesis, the composition is given by a[Dj ] with a ∈ Q. So
πf,0,j ◦πf,1 is the composition of

t[X ] ∈ Cor−1
S (X, S) = CH0(X)Q and a[XCj

] ∈ Cor1S(S, X) = CH1(X)Q,

and is equal to pr∗(a[Cj]) ∈ CH1(X ×S X)Q, where XCj
= f−1(Cj). This vanishes since

its composition with πf,0,j does by Lemma (2.3).
The argument is easier for πf,0,j ◦πf,−1 since we get an element in CH−1(Dj)Q by

taking the composition of [X ] ∈ Cor0S(S, X) and (id − σj) ◦ γj ∈ Cor−1
S (X, Dj).

For (2.4.5), it is enough to show that ζ is nilpotent since it is an idempotent. By
restricting ζ over a generic point of S and using condition (1.1.1), ζ is of the form

ζ = pr∗η +
∑

j cjπf,0,j with η ∈ CH1(S)Q, cj ∈ Q.

(Indeed, CH0(pr−1(Cj))Q is 2-dimensional by (1.1.1), and is generated by πf,0,j modulo
pr∗CH0(Cj)Q since πf,0,j /∈ pr∗CH0(Cj)Q.) We get cj = 0 since the action of ζ on
(ιj)∗Lj[1] ⊂ pRif∗(Ql,X [3]) vanishes. Then (2.4.5) follows from Lemma (2.3).

To show the uniqueness of πf,i, let π̃f,i be other mutually orthogonal projectors whose
action on the cohomological direct images is the same as πf,i. Then π̃f,i = πf,i over a
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sufficiently small open subvariety of S. Hence we have by the same argument as above
(using condition (1.1.1))

π̃f,i = πf,i + pr∗ηi +
∑

j ai,jπf,0,j with ηi ∈ CH1(S)Q, ai,j ∈ Q.

We have ai,j = 0 by looking at the action on pR0f∗(Ql,X [3]). We also get η0 = 0 by
π̃f,0 ◦ π̃f,0 = π̃f,0 together with Lemma (2.3). Moreover, η−1 + η1 = 0 by π̃f,−1 ◦ π̃f,1 = 0
since

pr∗η−1 ◦ πf,1 = pr∗η−1, πf,−1 ◦ pr∗η1 = pr∗η1.

(Indeed, for ξ1 ∈ Cor1S(S, X) = CH1(X)Q and ξ2 ∈ Cor0S(X, S) = CH1(X)Q, we have
ξ2 ◦ ξ1 = f∗(ξ1 · ξ2) ∈ CH1(S)Q by Lemma (2.2), and this is η in case ξ1 = ξ and ξ2 = f∗η
since we can take a good representative of ξ as remarked at the beginning of this subsection.
So the above equalities follow from Lemma (2.1).) Then the self-duality implies η−1 =
η1 = 0, and the uniqueness of the decomposition follows. (As for the ambiguity of ξ in
the construction of πf,±1, we have also the following: If we replace ξ with ξ + f∗ζ, then
η = f∗(ξ · ξ) is replaced by η + 2ζ, and hence πf,−1 and πf,1 are unchanged.)

Thus Theorem 2 is proved in the case k = k̄. The assertion in the case k 6= k̄ is
reduced to the case k = k̄ since the construction of the relative Chow-Künneth projectors
is compatible with the base change although the decomposition of the middle projector
becomes finer after the base change. So Theorem 2 follows.

To complete the proof of Theorem 2 we have to show the following. (In case C is
smooth and irreducible, this also follows from [9], Example. 5.18.)

2.5. Proposition. With the above notation, γj ◦ tγj ∈ Cor0S(Dj , Dj) = Cor0Co
j
(Do

j , D
o
j ) is

expressed by the matrix A.

Proof. Take a sufficiently general closed point s of Co
j . For s′ ∈ Dj lying over s, let

X̃s′ denote the irreducible component of Xs corresponding to s′ (this is identified with

p−1
j (s′) ⊂ X̃j). Let T be a sufficiently general transversal slice to Co

j at s, which is defined
by

(2.5.1) T = h−1(c) \ (Cj \ {s}) for a sufficiently general c ∈ k,

where T ∩ Cj = {s} and h is a function defined on a non-empty open subvariety U of S
such that dh 6= 0 on U and dh|U∩T 6= 0 on U ∩T . Let XT be a smooth compactification of

XT := f−1(T ) (this exists since it is 2-dimensional). The intersection matrix of X̃s′ , X̃s′′

in XT (where s′, s′′ are the points of Dj over s ∈ Co
j ) is given by the matrix A since

[Xs] · [X̃s′ ] = 0 in XT where we may assume that fT : XT → T is extended to XT → T .
As we have the injection

Cor0S(Dj Dj) ⊂ End((ρj)∗Ql),

where ρj : Dj → Cj is the projection, it suffices to calculate the composition

(ρj)∗Ql

tγj

→ R2f∗Ql(1)
γj

→ (ρj)∗Ql.

11



Here the first morphism naturally factors through

tγj : (ρj)∗Ql → H2
CRf∗Ql(1),

which is the dual of the last morphism, where H2
C is the local cohomology sheaf.

Restricting these to the transversal slice T , we obtain

(2.5.2) (γj)T ◦ (tγj)T : Ql,s′ ⊕Ql,s′′ → R2(fT )∗Ql(1) → Ql,s′ ⊕ Ql,s′′ ,

where fT : XT → T is the restriction of f over T and similarly for (γj)T , (tγj)T . Here
Ql,s′ ⊕ Ql,s′′ is identified with a sheaf supported on s. The first morphism of (2.5.2)
naturally factors through

(tγj)T : Ql,s′ ⊕Ql,s′′ → H2
{s}(R(fT )∗Ql(1)).

By the generic base change theorem ([11], 2.9 and 2.10) this is the dual of the last morphism
of (2.5.2) if c ∈ k in (2.5.1) is sufficiently general. We have to show that (2.5.2) is expressed
by the intersection matrix A.

For t, u ∈ {s′, s′′}, the (t, u)-component of (2.5.2) is given by the composition of
morphisms of ℓ-adic cohomology groups

H0({t})
p∗

j

→ H0(X̃t)
(λt)∗
→ H2

c (XT )(1) → H2(XT )(1)
(λu)∗

→ H2(X̃u)(1)
pj∗

→ H0({u}),

where λt : X̃t → XT is the restriction of gj , and similarly for λu : X̃u → XT . This is
shown by using the commutative diagram

H2
{s}(K) → (H2K)s

↓ ↑
H2

c(T, K) → H2(T, K),

where K = R(fT )∗Ql(1) so that H2
c(T, K) = H2

c (XT )(1), etc.
Moreover the middle morphism H2

c (XT )(1) → H2(XT )(1) naturally factors through
H2(XT )(1), and hence we can replace XT with XT in the above composition of mor-
phisms. This implies that (2.5.2) is expressed by the intersection matrix A as is desired.
So Proposition (2.5) follows.

2.6. Proof of Theorem 1. With the notation of (2.4), we have

πf,−1 = [X ] ◦ ξ, πf,1 = tξ ◦ t[X ].

Let πS,i be the Chow-Künneth decomposition for S in [17] where πS,i = 0 for i /∈ [0, 4].
We may assume the self-duality πS,i = tπS,4−i as is well-known (by the same argument as
in the construction of πf,±1 in (2.4)). Define

πX,i = [X ] ◦πS,i ◦ ξ + tξ ◦πS,i−2 ◦ t[X ] + δi,3 πf,0,
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where δi,3 = 1 if i = 3, and 0 otherwise. Then we have isomorphisms of Chow motives

(X, [X ] ◦πS,i ◦ ξ) = (S, πS,i), (X, tξ ◦ πS,i−2 ◦ t[X ]) = (S, πS,i−2)(−1),

using ξ ◦ [X ] = id as in (2.4.1–2). Put M0,j = (X, πf,0,j). Using condition (1.1.1) together
with duality we obtain

Hi(M0,j) ∼= Hi−2(Cj , (ιj)∗Lj)(−1) = 0

for all i 6= 3 in case k̄ = k, hence the motive (X, πX,3) only has cohomology in degree 3.
So we get the Chow-Künneth decomposition for X as desired.

2.7. Proof of Corollary 1. Using the action of correspondences on the Chow groups
together with (2.4.4), we get

CH2
alg(X)Q =

⊕
−1≤i≤1 (πf,i)∗CH2

alg(X)Q,

and
(πf,−1)∗CH2

alg(X)Q = CH2
alg(S)Q, (πf,1)∗CH2

alg(X)Q = CH1
alg(S)Q,

since ξ ◦ [X ] = id as in (2.4.1). We have moreover

(πf,0)∗CH2
alg(X)Q =

⊕
j (π̃j)∗CH1

alg(Dj)Q =
⊕

jCH1
alg(Dj)

σj=−1
Q ,

where the last term is the (−1)-eigenspace of CH1
alg(Dj)Q for the action of σj . So the

assertion is reduced to
CH1

alg(Dj)Q = J(Dj)(k)Q,

where J(Dj)(k) is the abelian group of the k-valued points of the Picard variety of Dj/k.
But this is well-known in case Dj has a k-valued point, and the general case is reduced
to this case using the action of the Galois group and the group structure of the Picard
variety. This finishes the proof of Corollary 1.

2.8. Relation with Murre’s conjectures. Let T (S) ⊂ CH2
alg(S) be the Albanese kernel,

and put hi(S) = (S, πS,i). Recall [18] that the rational Chow groups of the motives hi(S)
are given by the table

h0(S) h1(S) h2(S) h3(S) h4(S)
CH0 Q 0 0 0 0
CH1 0 Pic0

S/k(k)Q NS(S)Q 0 0

CH2 0 0 T (S)Q AlbS/k(k)Q Q.

Put M0 = (X, πf,0), and set hi(X) = (X, πX,i). As h(X) ∼= h(S) ⊕ h(S)(−1) ⊕ M0 we
obtain

h0(X) ∼= h0(S),

h1(X) ∼= h1(S),

h2(X) ∼= h0(S)(−1) ⊕ h2(S),

h3(X) ∼= h1(S)(−1) ⊕ h3(S) ⊕ M0,

h4(X) ∼= h2(S)(−1) ⊕ h4(S),

h5(X) ∼= h3(S)(−1),

h6(X) ∼= h4(S)(−1).
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Hence the rational Chow groups of the motives hi(X) are given by the table

h0(X) h1(X) h2(X) h3(X) h4(X) h5(X) h6(X)
CH0 Q 0 0 0 0 0 0
CH1 0 Pic0

S/k(k)Q Q⊕ NS(S)Q 0 0 0 0

CH2 0 0 T (S)Q AQ NS(S)Q ⊕ Q 0 0
CH3 0 0 0 0 T (S)Q AlbS/k(k)Q Q

with
AQ = Pic0

S/k(k)Q ⊕ AlbS/k(k)Q ⊕ PX(k)Q.

The above table shows that the only correspondences that act nontrivially on CHj(X)Q
are πX,j , . . . , πX,2j. Hence Murre’s conjectures A and B [18] hold for the conic bundle X .
This is a refinement of results of del Angel and Müller–Stach for uniruled threefolds [1].
At present, it is not clear whether X satisfies Murre’s conjectures C and D.

2.9. Remark. The decomposition

h(X) ∼= h(S) ⊕ h(S)(−1) ⊕ (
⊕

jPrym(Dj/C′
j)(−1))

implies that the motive h(X) is finite dimensional (in the sense of Kimura–O’Sullivan) if
h(S) is finite dimensional.
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