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1 Introduction

In an attempt to generalize the classical Noether–Lefschetz theorem for sur-
faces of degree d ≥ 4 in P3, Griffiths and Harris [G-H] raised a number of
questions concerning the behaviour of curves on a very general threefold X
of degree d ≥ 6 in P4. One of their questions is whether the image of the
Abel–Jacobi map ψX : CH2

hom(X) → J2(X) is zero. Green [G2] and Voisin
[V1] partially solved this problem; they showed that the image of ψX is
contained in the torsion points of J2(X). A similar statement holds for odd-
dimensional hypersurfaces in projective space: if X = V (d) ⊂ P2m (m ≥ 2)
is a very general hypersurface of degree d ≥ 4 + 2/(m− 1), then the image
of the Abel–Jacobi map ψX is contained in the torsion points of Jm(X); see
[G2].

We extend the result of Green and Voisin to smooth complete intersec-
tions of odd dimension in projective space (Theorem 4.1). In all but one of
the cases where the conditions of Theorem 4.1 are not satisfied, it is known
that the image of the Abel–Jacobi map is indeed non–torsion for a very gen-
eral member of the family of complete intersections under consideration. The
remaining exceptional case will be dealt with later.

To extend the result of Green and Voisin, we have to find an efficient
algebraic description of the variable cohomology of complete intersections,
analogous to the Jacobi ring description in the case of projective hypersur-
faces. This problem has been solved through the work of various people,
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including Terasoma [Te], Konno [Ko], Libgober–Teitelbaum [L], [L-T] and
Dimca [Di2]. The starting point is the following observation, due to Tera-
soma: if X = V (f0, . . . , fr) is a smooth complete intersection of multidegree
(d0, . . . , dr) in Pn+r+1 with d0 = . . . = dr = d, then the variable cohomology
of X is isomorphic (up to a shift in the Hodge filtration) to the variable co-
homology of the hypersurface X = V (F ) ⊂ Pr ×Pn+r+1 of type (1, d) defined
by the bihomogeneous polynomial

F (x, y) = y0f0(x) + . . .+ yrfr(x).

Konno extended this approach to the case of arbitrary multidegree by viewing
(f0, . . . , fr) as a section of the vector bundle E = OP(d0)⊕ . . .⊕OP(dr). The
product of projective spaces is replaced by the projective bundle P(E∨), and
X is replaced by the zero locus of the associated section of the tautological
line bundle ξE on P(E∨). The variable cohomology is then described via the
pseudo–Jacobi ring introduced by Green [G1]. Working with an additional
hypothesis, Libgober obtained a description of the variable cohomology via
residues of differential forms defined on Pn+r+1, in the spirit of the work of
Griffiths [Gr]; he observes that the variable cohomology is related to a quo-
tient of the ring S = C[x0, . . . , xn+r+1, y0, . . . , yr], where S carries a suitable
bigrading.

These different approaches were elegantly combined in the recent work of
Dimca. He observes that P(E∨), being a smooth and compact toric variety,
can be constructed as a geometric quotient. This explains the bigrading on
S and shows that P(E∨) behaves like the ordinary projective space in many
ways. Given this, Terasoma’s original approach goes through with only minor
modifications.

This paper is oranized as follows: in Section 2, Dimca’s method is used
to give a description of the variable cohomology in terms of the Jacobi ring
of X in P(E∨). Next we discuss the so–called symmetrizer lemma in Section
3, using which we prove our main result in Section 4.

2 Description of the Jacobi ring

Let X = V (d0, . . . , dr) ⊂ Pn+r+1 be a smooth complete intersection of di-
mension n ≥ 3, where di ≥ 2 for i = 0, . . . , r. We assume for the moment
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that r > 0, i.e., X is not a hypersurface. The (r + 1)–tuple (f0, . . . , fr)
of equations that define X represents a global section of the vector bundle
E = OP(d0)⊕. . .OP(dr). Let P = P(E∨) be the projective bundle whose fiber
over a point x ∈ Pn+r+1 is the projective space of hyperplanes in Ex. Using
the results in [Cox], we can associate to the smooth and compact toric variety
P its ’homogeneous coordinate ring’ S = C[x0, . . . , xn+r+1, y0, . . . , yr]. This
ring carries a natural grading by elements of Pic(P ) = Pic(Pn+r+1)×Z ∼= Z2.
The variables xi (i = 0, . . . , n + r + 1) have bidegree (0, 1); the variables yj

(j = 0, . . . , r) have bidegree (1,−dj). Set

F (x, y) = y0f0(x) + . . .+ yrfr(x),

and let X ⊂ P be the divisor defined by F (x, y) ∈ S1,0.

Remark 2.1. Set N = n + r + 1. We denote the open subset CN \ {0} ×
Cr+1 \ {0} ⊂ CN+r+1 by U . The presence of a bigrading on the ring S is
a consequence of the construction of P as a geometric quotient U/G, where
G = C∗ × C∗ acts on U by

(t1, t2).(x0, . . . , xN , y0, . . . , yr) = (t2x0, . . . , t2xN , t
−d0
2 t1y0, . . . , t

−dr

2 t1yr).

Good references for this construction are [Cox], [Bat] and [Bat-Cox].

Lemma 2.2 X is a very ample divisor on P if and only if di > 0 for all
i = 0, . . . , r.

Proof: Note that F (x, y) ∈ S1,0 represents the global section of the tau-
tological line bundle ξE = OP (1) that corresponds to (f0, . . . , fr) under the
canonical isomorphism H0(P, ξE) = H0(Pn, E). It is readily verified that ξE
is very ample if and only if the line bundles OP(di) are very ample for all
i = 0, . . . , r, cf. [B-S, (3.2.3)]. �

Remark 2.3 To prove the above lemma from a toric point of view, one
chooses a suitable divisor D of bidegree (1, 0) and shows that the support
function ψD of the corresponding line bundle O(D) is strictly upper convex
if and only if all the degrees di are positive.

Lemma 2.4 X is non–singular ⇐⇒ X is non–singular.

Proof: Since ∂F
∂yi

= fi(x) and ∂Fover∂xi =
∑r

j=0 yj
∂fj

∂xi
, a point (x, y) ∈ Y is

singular if and only if f0(x) = . . . = fr(x) = 0 and the matrix (
∂fj

∂xi
(x))i,j jas

rank at most r, i.e., if and only if x ∈ X is singular. �
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Definition 2.5 Let i (resp. j) be the inclusion of X in Pn+r+1 (resp. the
inclusion of X in P ). We define the variable cohomology of X and X as

Hn
var(X,Q) = coker (Hn(Pn+r+1,Q)) i∗−→ Hn(X,Q))

Hn+2r
var (X ,Q) = coker (Hn+2r(P,Q) j∗−→ Hn+2r(X ,Q)).

Remark 2.6 The notions of variable and primitive cohomology are strongly
related: if V is a msooth projective variety and D ⊂ V is a smooth com-
plete intersection of ample divisors in V of dimension d, one can show that
Hd

pr(D) = i∗Hd
pr(V ) ⊕Hd

var(D).

Let π : P → Pn+r+1 be the projection, and write X̃ = π−1(X) = X × Pr.
Let ι : X → P be the inclusion map, and put ϕ = π◦ι : X → Pn+r+1.

Lemma 2.7 The inclusion X̃ →֒ X induces an isomorphism of Hodge struc-
tures

Hn+2r
var (X ,C)

∼

−→ Hn
var(X,C) ⊗H2r(Pr,C).

Proof: Consider the Leray spectral sequences

Ep,q
2 = Hp(Pn+r+1, Rqπ∗C) ⇒ Hp+q(P,C)

′E
p,q
2 = Hp(Pn+r+1, Rqϕ∗C) ⇒ Hp+q(X ,C)

associated to the maps π : P → Pn+r+1 and ϕ : X → Pn+r+1. Consider also
the Künneth spectral sequence

′′E
p,q
2 = Hp(X,C) ⊗Hq(Pr,C) ⇒ Hp+q(X̃,C).

The local systems Rqπ∗C and Rqϕ∗C can be described as follows:

Rqπ∗C =

{
C(− q

2
) if q ≤ 2r, q even

0 otherwise

Rqϕ∗C =





C(− q
2
) if q < 2r, q even

CX(−r) if q = 2r
0 otherwise.

All the spectral sequences degenerate at E2. The Lefschetz hyperplane
theorem shows that

Ep,q
2

∼−→ ′E
p,q
2

∼−→ ′′E
p,q
2
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for (p, q) 6= (n, 2r) and

En,2r
2 →֒ ′E

n,2r
2

∼−→ ′′E
n,2r
2 .

Hence

Hn+2r
var (X ,C) ∼= coker (En,2r

2 → ′E
n,2r
2 )

∼= coker (En,2r
2 →֒ ′′E

n,2r
2 )

∼= Hn
var(X,C) ⊗H2r(Pr,C).

For details, see [Ko] or [Te]. �

The description of the variable cohomology of X strongly resembles the
description of the primitive cohomology of a hypersurface in Pn+1. As most
of the results are similar to those in [Di1], [Do] and [CGGH], we shall omit
their proofs.

The Euler vector fields

e1 =
r∑

i=0

yi
∂

∂yi

and

e2 =

n+r+1∑

i=0

xi
∂

∂xi
−

r∑

i=0

diyi
∂

∂yi

generate the action of G = C∗ × C∗ on U = Cn+r+1 \ {0} × Cr+1 \ {0}. The
orbits of this action are the fibers of π : U → P .

Definition 2.8.

(i) For a monomial f = xα0
0 . . . xαN

N yβ0
0 . . . yβr

r we define |f |1 =
∑r

i=0 βi,
|f |2,x =

∑n+r+1
i=0 αi, |f |2,y = −

∑r
j=0 djβj and |f |2 = |f |2,x + |f |2,y.

(ii) For a differential form ω = f.dxs1 ∧ . . . ∧ dxsi
∧ dyt1 ∧ . . . ∧ dytj we

set |ω|1 = |f |1 + j, |ω|2,x = |f |2,x + i, |ω|2,y = |f |2,y −
∑j

k=1 dtk and
|ω|2 = |ω|2,x + |ω|2,y.

In the statement of the following Lemma, the differential d is written in
the form d = dx + dy. We write Ak = H0(Cn+2r+2,Ωk

Cn+2r+2), and denote the
contraction with a vector field e by ie.
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Lemma 2.9. If ω ∈ Ai and ω′ ∈ Aj, then

(i) ie(ω ∧ ω′) = ie(ω) ∧ ω′ + (−1)iω ∧ ie(ω
′)

(ii) ie1(df) = |f |1f , ie2(df) = |f |2f

(iii) dy(ie1ω) + ie1(dyω) = |ω|1 ω

(iv) dx(ie2ω) + ie2(dxω) = |ω|2,x ω

(v) dy(ie2ω) + ie2(dyω) = |ω|2,y ω

(vi) |ie1(ω)|k = |ie2(ω)|k = |ω|k, k = 1, 2.

Lemma 2.10. A rational k–form ϕ on U given by

ϕ =
1

H(x, y)

∑

I,J

|I|+|J|=k

AI,J(x, y) dxI ∧ dyJ

satisfies ϕ = π∗ω for a rational k–form ω on P if and only if

(i) ϕ is G–invariant, i.e., |ϕ|1 = |ϕ|2 = 0.

(ii) ie1(ϕ) = ie2(ϕ) = 0.

Proof: One easily checks that ϕ = π∗ω for a rational k–form ω on P if and
only if ϕ and dϕ are horizontal, i.e., ie(ϕ) = ie(dϕ) = 0 for all vertical vector
fields e. This is equivalent to ie1(ϕ) = ie2(ϕ) = ie1(dϕ) = ie2(dϕ) = 0, hence
the assertion follows from the previous Lemma. �

From now on we shall identify rational differential forms on P with their
pullbacks to U .

Lemma 2.11. Suppose that ψ ∈ Ak satisfies the following conditions

(i) ie1(ψ) = ie2(ψ) = 0

(ii) |ψ|1 6= 0 and at least one of |ψ|2, |ψ|2,x is nonzero.

Then ψ = ie2ie1(ϕ) for some ϕ ∈ Ak+2.
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Proof: If |ψ|1 = α 6= 0 and |ψ|2,x = β 6= 0, we can write

αβψ = α(ie2(dxψ) + dx(ie2ψ))

= αie2dxψ = ie2(dx(αψ))

= ie2(dx(ie1(dyψ) + dy(ie1ψ)))

= ie2(dx(ie1(dyψ))) = −ie2ie1(dxdyψ).

�

Corollary 2.12.

ψ ∈ H0(P,Ωk
P (qX )) ⇐⇒ ψ =

ie2ie1(ϕ)

F (x, y)q

for some ϕ ∈ Ak+2 with |ϕ|1 = q and |ϕ|2 = 0.

The following Lemma shows how to express dψ in a similar form:

Lemma 2.13. If

ψ =
ie2ie1(ϕ)

F q
,

then

dψ =
ie2ie1(Fdϕ− q dF ∧ ϕ)

F q+1
.

Lemma 2.14.

(i)

ψ ∈ H0(P,Ωn+2r+1
P ((q + 1)X )) ⇐⇒ ψ =

P (x, y)Ω

F q+1

where Ω = ie2ie1(dx0 ∧ . . . ∧ dxn+r+1 ∧ dy0 ∧ . . . ∧ dyr).

(ii)

ψ̃ ∈ H0(P,Ωn+2r
P (qX ) ⇐⇒ ψ̃ =

ie2ie1(ϕ)

F q

7



where

ϕ =
n+r+1∑

i=0

Qi(x, y)Ωi∧dy0 ∧ . . .∧dyr +
r∑

α=0

Rα(x, y)dx0∧ . . .∧dxn ∧Ωα,

Ωi = dx0 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+r+1,

Ωα = dy0 ∧ . . . ∧ d̂yα ∧ . . . ∧ dyr.

Definition 2.15. The Jacobi ideal J(F ) ⊂ S is the ideal in S generated by
the partial derivatives

∂F

∂x0
, . . . ,

∂F

∂xn+r+1
,
∂F

∂y0
, . . . ,

∂F

∂yr
.

The Jacobi ring R is the quotient ring S/J(F ). The bigrading on S induces
a bigrading on R.

Proposition 2.16. There is a natural isomorphism

Hn−p,p
var (X) ∼= Rp,d(X),

where n = dim X and d(X) =
∑r

i=0 di − n− r − 2.

Proof: We have already seen that Hn−p,p
var (X) ∼= Hn−p+r,p+r

var (X ). There is an
exact sequence

0 → Hn−p+r+1,p+r
pr (P ) → Hp+r(Ωn−p+r+1

P (logX )) → Hn−p+r,p+r
var (X ) → 0.

The Leray–Hirsch theorem shows that

Hn+2r(P ) ∼=
⊕

i+j=n+2rH
i(Pn+r+1) ⊗Hj(P2r.

Write bi(P ) = dim H i(P,C). The above formula implies that bn+2r−2(P ) =
bn+2r(P ), so Hn+2r

pr (P ) = 0. Hence

Hn−p+r,p+r
var (X ) ∼= Hp+r(Ωn−p+r+1

P (logX )).
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Since X ⊂ P is an ample divisor by Lemma 2.2, we can apply the Bott
vanishing theorem on P (see [Bat-Cox, Theorem 7.1]) to obtain

H i(P,Ωj
P (kX )) = 0 for all i > 0, k > 0 and j ≥ 0.

A spectral sequence argument shows that

Hp+r(Ωn−p+r+1
P (logX )) ∼=

H0(Ωd
P ((p+ r + 1)X ))

H0(Ωd
P ((p+ r)X )) + dH0(Ωd−1

P ((p+ r)X )),

where d = dim P = n+ 2r + 1.
By Lemma 2.14, an element of H0(P,Ωd

P ((p + r + 1)X )) can be written
in the form

ψP =
P (x, y)Ω

F p+r+1

where deg Ω = (r + 1,−d(X)) and deg(P (x, y)) = (p, d(X)). What we have
shown so far is that the map

Res : Sp,d(X) → F d−p+rHn+2r+1
var (X )

P (x, y) 7→ [Res(ψP )]

is surjective. If ψ̃ ∈ H0(P,Ωn+2r
P ((p+ r)X )), then ψ̃ =

ie2 ie1 (ϕ)

F p+r and

dψ̃ =
{F (

∑N
i=0

∂Qi

∂xi
+

∑r
j=0

∂Rj

∂yj
) − (p+ r)(

∑N
i=0

∂F
∂xi
Qi +

∑r
j=0

∂F
∂yj
Rj}Ω

F p+r+1
,

where N = n + r + 1. Hence

ψP ≡ dψ̃ modH0(Ωn+2r+1
P ((p+ r)X ) ⇐⇒ P ∈ J(F ).

This shows that Res induces an isomorphism Rp,d(X)
∼= Hn−p+r,p+r

var (X ), as
desired. �

Remark 2.17.

(i) If r = 0, then P(E∨) ∼= Pn+1, S = C[x0, . . . , xn+1, y0] and F (x, y) =
y0f0(x). Clearly the ring R(F ) is different from the Jacobi ring R(f0)
of the hypersurface V (f0) ⊂ Pn+1, but the map α : S → C[x0, . . . , xn+1]
that sends G(x0, . . . , xn+1, y0) to G(x0, . . . , xn+1, 1) induces an isomor-
phism R(F )p,d(X)

∼

−→ R(f0)(p+1)d0−n−1 between the graded pieces of
these rings that describe Hn−p,p

var (X).
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(ii) The toric description of P shows that the bidegree of the canonical
bundle KP is (−r − 1, d(X)) and Sp,d(X)

∼= H0(P,KP ⊗ ξp+r+1
E ).

(iii) The description of the variable cohomology Hn
var(X) for a complete

intersection X in an arbitrary smooth and compact toric variety PΣ

proceeds along the same lines. The number of Euler vector fields equals
the rank of Pic(P(E∨)) = Pic(PΣ) × Z.

3 Symmetrizer lemma

Using a version of the symmetrizer lemma, we prove that the infinitesimal
invariants associated to certain normal functions are zero. Consequently
these normal functions are torsion sections of the fiber space of intermediate
Jacobians.

We keep the notation of Section 2, but from now on we consider the
case where X is a smooth complete intersection in P2m+r of odd dimension
n = 2m − 1. In this case we have H2m−1(X) = H2m−1

var (X) = H2m−1
pr (X).

Let U ⊂ PH0(P2m+r, E) be the open subset parametrizing smooth complete
intersections, and let f : XU → U be the universal family. The cohomology
groups of the fibers of f give rise to a local system HZ = R2m−1f∗Z. Let
H2m−1 = HZ⊗ZOU be the associated Hodge bundle; it is filtered by holomor-
phic subbundles Fp (0 ≤ p ≤ 2m − 1). The Hodge bundle comes equipped
with a flat connection ∇, the Gauss–Manin connection, whose flat sections
are the sections of the local system HZ. The filtration of subbundles F• is
shifted by ∇ according to the Griffiths transversality rule ∇Fp ⊂ Ω1

U ⊗Fp−1.
Let

J m = H2m−1/(Fm +HZ)

be the sheaf of intermediate Jacobians over U . The Gauss–Manin connection
induces a map

∇ : J m → Ω1
U ⊗H2m−1/Fm−1,

whose kernel is denoted by J m
h . By abuse of language, a global section of

J m
h is called a normal function.

To study the image of the Abel–Jacobi map using normal functions, we
’spread out’ cycles on a very general fiber to relative cycles.
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If X0 = V (d0, . . . , dr) ⊂ Y is a very general complete intersection and
Z0 ∈ Zm

hom(X0), there exist a finite étale covering g : T → U , a relative cycle
ZT ∈ CHm

hom(XT/T ) and a point t0 ∈ g−1(0) such that the fiber of ZT over
t0 is Z0; cf. [H]. Set Zt = ZT ∩ f−1

T (t) and let ν ∈ H0(T,Jm
h ) be the normal

function given by ν(t) = ψXt
(Zt). Set HQ = HZ⊗Z Q. The twisted De Rham

complex
Ω•

T ⊗HQ : H → Ω1
T ⊗H → Ω2

T ⊗H → · · ·

is a resolution of the local system HC = HQ ⊗Q C. Let Fm(Ω•

T ⊗HQ) be the
subcomplex

Fm → Ω1
T ⊗ Fm−1 → Ω2

T ⊗Fm−2 → · · ·

of Ω•

T ⊗ HQ. Note that although the differential ∇ of Fm(Ω•

T ⊗ HQ) is not
OT –linear, the induced differential ∇ on the graded pieces Grp

F (Ω•

T ⊗ HQ)
is OT –linear. The normal function ν has an infinitesimal invariant δν ∈
H0(T,H1(Fm(Ω•

T ⊗ HQ))); see [G3, Lecture 6]. It is known that ν has flat
local liftings if and only if δν = 0 [loc. cit.]. Hence, to prove that δν = 0 it
suffices to show that

H1(Grp
F (Ω•

T ⊗HQ)) = 0 for all p ≥ m.

Let T0 be the tangent space to U at 0 ∈ U . As g : T → U is an étale covering,
the tangent space to T at t0 ∈ g−1(0) is isomorphic to T0. We want to show
that the first cohomology group of the complex

Hp,2m−p−1(X0) → T∨

0 ⊗Hp−1,2m−p(X0) →
2∧
T∨

0 ⊗Hp−2,2m−p+1(X0)

vanishes. Dualizing this complex we obtain

2∧
T0 ⊗H2m−p+1,p−2(X0) → T0 ⊗H2m−p,p−1(X0) → H2m−p−1,p(X0).

Lemma 3.1. The diagram

∧2 S1,0 ⊗Rp−2,d(X) −→ S1,0 ⊗ Rp−1,d(X) −→ Rp,d(X)y
y

y
∧2 T0 ⊗H2m−p+1,p−2(X0) −→ T0 ⊗H2m−p,p−1(X0) −→ H2m−p−1,p(X0)

is commutative.
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Proof: This is a standard consequence of the description of H2m−1(X) by
residues of differential forms. Note that the identification of the tangent
space TU,0 with S1,0 is obtained by sending a polynomial G(x, y) ∈ S1,0 to
the infinitesimal deformation of X given by Ft(x, y) = F (x, y) + tG(x, y),
t2 = 0. The commutativity of the right square is established by the following
basic observation: if we write

ΩP (t) =
P (t)Ω

(F + tG)p+r
,

then

∂/∂tΩP (t)|t=0 ≡ −(p + r)
P (0)GΩ

F p+r+1

modulo differential forms with poles of lower order. It follows that

∇∂/∂t Res ΩP (t) = ∂/∂t(Res ΩP (t))|t=0

= Res(∂/∂tΩP (t)|t=0) = Res(ΩPG).

The commutativity of the square on the left hand side follows in a similar
way. �

In the sequel we shall use some standard multi–index notation. For a
multi–index I = (i0, . . . , ir) we write 〈d, I〉 = d0i0 + . . . + drir. Let (i0)
denote the (r + 1)–tuple (0, . . . , 0, 1, 0, . . . , 0) where the number 1 occurs at
position i0.

Lemma 3.2. The multiplication map

Sa,b ⊗ Sα,β −→ Sa+α,b+β

is surjective if

(i) a ≥ 0, α ≥ 0

(ii) 〈d, I〉+b ≥ 0 for all I with |I| = a, 〈d, J〉+β ≥ 0 for all J with |J | = α.

Proof: Note that Sa,b is spanned by the monomials yIxJ with |I| = a,
|J | = 〈d, I〉+b. Given a monomial xKyL with |L| = a+α, |K| = 〈d, L〉+b+β
we can write L = L1 ∪ L2 with |L1| = a, |L2| = α and K = K1 ∪K2 where
|K1| = 〈d, L1〉 + b, |K2| = 〈d, L2〉 + β. �
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Lemma 3.3. (symmetrizer lemma) Assume that n ≥ 2, p ≥ 2 and
d0 ≥ . . . ≥ dr. The complex

2∧
S1,0 ⊗Rp−2,d(X) → S1,0 ⊗Rp−1,d(X) → Rp,d(X)

is exact at the middle term if the following two conditions are satisfied:

(∗) d0 + . . .+ dr + (p− 2)dr ≥ n + r + 3

(∗∗) d1 + . . .+ dr + (p− 1)dr ≥ n + r + 2.

To prove the symmetrizer lemma, it suffices to show that

(i) The complex

2∧
S1,0 ⊗ Sp−2,d(X)

g
−→ S1,0 ⊗ Sp−1,d(X)

h
−→ Sp,d(X)

is exact at the middle term.

(ii) The map
S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

is surjective.

This follows by chasing the commutative diagram with exact columns

0 0 0
↓ ↓ ↓∧2 S1,0 ⊗ Jp−2,d(X) → S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

↓ ↓ ↓∧2 S1,0 ⊗ Sp−2,d(X) → S1,0 ⊗ Sp−1,d(X) → Sp,d(X)

↓ ↓ ↓∧2 S1,0 ⊗Rp−2,d(X) → S1,0 ⊗Rp−1,d(X) → Rp,d(X)

↓ ↓ ↓
0 0 0.

We shall verify the conditions (i) and (ii) in Lemmas 3.4 and 3.7.
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Lemma 3.4. The complex

2∧
S1,0 ⊗ Sp−2,k

g
−→ S1,0 ⊗ Sp−1,k

h
−→ Sp,k

is exact at the middle term provided that p ≥ 2 and 〈d, J〉 + k > 0 for all
multi–indices J with |J | = p− 2.

Proof: The map g is given by

g(yi0x
I0 ∧ yi1x

I1 ⊗ yKxL) = yi0x
I0 ⊗ yK+(i1)xL+I1 − yi1x

I1 ⊗ yK+(i0)xL+I0 .

This shows that

yi0x
I0 ⊗ yJ0xK0 ≡ yi1x

I1 ⊗ yJ1xK1 mod (im g)

if J0 + (i0) = J1 + (i1), K0 + I0 = K1 + I1 and K1 − I0 ≥ 0. In fact, if these
conditions are satisfied it follows that K0 − I1 ≥ 0 and

M = K0 + I0 = K1 + I1 = I0 + I1 + (K0 − I1)

= I0 + I1 + (K1 − I0);

hence K0 − I1 = K1 − I0 = L, |L| = 〈d, J〉+ k, and J = J0 − (i1) = J1 − (i0).
Combining the two relations

yi0x
I0 ⊗ yJ0xM−I0 ≡ yi1x

M−L ⊗ yJ1xL

≡ yi2x
I2 ⊗ yJ2xM−I2 ,

we find that
yi0x

I0 ⊗ yJ0xM−I0 ≡ yi2x
I2 ⊗ yJ2xM−I2

if J0 + (i0) = J2 + (i2) and if there exists an L with L ≤ M , L − I0 ≥ 0
and L − I2 ≥ 0. Here we choose J1 and i1 in the following way: take
i1 = max(i0, i2) and take J1 = Jα if i1 = iα, α ∈ {0, 2}. Notice that
|L| = 〈d, J1〉 + k.

If J0 − J2 = (i2)− (i0) and I0 − I2 = (k0)− (k2) (i.e., I0 and I2 also differ
by one change of index), we can choose L with L− I0 ≥ 0 and L− I2 ≥ 0 if
|L| > |I0| and |L| > |I2|, i.e., if

〈d, J1〉 + k > max(di0, di2).
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By construction this holds if 〈d, J〉 + k > 0, where we set J = J1 − (i0) if
i1 = i2 and J = J1 − (i2) if i1 = i0.

By transitivity we can show the existence of L if I0 and I2 differ by more
than one change of index. Hence

yi0x
I0 ⊗ yJ0xM−I0 ≡ yi2x

I2 ⊗ yJ2xM−I2

if J0 + (i0) = J2 + (i2), M ≥ I0, M ≥ I1 and 〈d, J〉 + k > 0 (J = J0 − (i2) =
J2 − (i0)). If

h(
∑

i,I,K,L

ci,I,K,L yix
I ⊗ yKxL) =

∑

i,I,K,L

ci,I,K,L yK+(i)xI+L

=
∑

(J,M)

∑

(i,I,K,L)
K+(i)=J,I+L=M

ci,I,K,L yJxM = 0,

then ∑

(i,I,K,L)
K+(i)=J,I+L=M

ci,I,K,L = 0

for all pairs (J,M), hence
∑

i,I,K,L

ci,I,K,L yix
I ⊗ yKxL ≡ 0 mod (im g).

�

Remark 3.5. The proof of Lemma 3.4 is based on the proof of the sym-
metrizer lemma for projective hypersurfaces by Donagi and Green [D-G]. It
is possible to prove Lemmas 3.4 and 3.7 in a different way, using the abstract
definition of the Jacobi ring from Chapter 1 and Castelnuovo–Mumford reg-
ularity.

Corollary 3.6. Suppose that n ≥ 2 and p ≥ 2. The complex

2∧
S1,0 ⊗ Sp−2,d(X)

g
−→ S1,0 ⊗ Sp−1,d(X)

h
−→ Sp,d(X)

is exact at the middle term if condition (∗) of Lemma 3.3 is satisfied.

Proof: Apply Lemma 3.4 with k = d(X). �
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Lemma 3.7. Suppose that n ≥ 2 and p ≥ 2. If the conditions (∗) and (∗∗)
of Lemma 3.3 are satisfied, the map

S1,0 ⊗ Jp−1,d(X) → Jp,d(X)

is surjective.

Proof: As deg(∂F/∂xk) = (1,−1) (0 ≤ k ≤ 2m + r) and deg(∂F/∂yi) =
(0, di) (0 ≤ i ≤ r), it suffices to show that the map µ′ that appears in the
commutative diagram

S1,0 ⊗ Sp−a−1,d(X)−b ⊗ Ja,b
µ′

−→ Sp−a,d(X)−b ⊗ Ja,byν

yν′

S1,0 ⊗ Jp−1,d(X)
µ

−→ Jp,d(X)

is surjective if (a, b) = (1,−1) and if (a, b) = (0, di) (i = 0, . . . , r). If (a, b) =
(1,−1), then µ′ is surjective if 〈d, J〉+d(X)+1 ≥ 0 for all J with |J | = p−2;
this follows from condition (∗).

If (a, b) = (0, di) (i = 0, . . . , r), then µ′ is surjective if

〈d, J〉 + d(X) − di ≥ 0

for all J with |J | = p− 1. This follows from the condition (∗∗). �

Corollary 3.8. Suppose that m ≥ 2 and d0 ≥ . . . ≥ dr. Then δν = 0
provided that

(1) d0 + . . .+ dr + (m− 2)dr ≥ 2m+ r + 2

(2) d1 + . . .+ dr + (m− 1)dr ≥ 2m+ r + 1.

Proof: This follows from Lemmas 3.1 and 3.3. �

Note that the first condition in Corollary 3.8 is implied by the second
one, unless d0 = . . . = dr.

Lemma 3.9. If the conditions (1) and (2) of Corollary 3.8 are satisfied, the
normal function ν has flat local liftings that are unique up to sections of HZ.
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Proof: It follows from (1) and (2) that δν = 0, hence ν has flat local liftings.
If ν̃ and ν̃ ′ are two flat liftings of ν over an open set U0 ⊂ T , we can write

ν̃ − ν̃ ′ = ϕ+ λ

where ϕ ∈ H0(U0,F
m) and λ ∈ H0(U0, HZ). Since ∇ϕ = ∇(ν̃ − ν̃ ′) = 0, it

suffices to show that the map

∇ : Fm → Ω1
T ⊗Fm−1

is injective. By duality, it suffices to show that for all t ∈ T the map

T ⊗H2m−p,p−1(Xt) → H2m−p−1,p(Xt)

is surjective for p ≥ m. This follows if the map

S1,0 ⊗ Sp−1,d(X) → Sp,d(X)

is surjective, and by Lemma 3.2 this holds if 〈d, J〉+ d(X) > 0 for all J with
|J | = p− 1. This follows from condition (1). �

If the conditions (1) and (2) of Corollary 3.8 are satisfied, then the normal
function ν is torsion. This is proved using a monodromy argument, which is
taken from [V3, Lecture 4].

Lemma 3.10. If ν has flat local liftings that are unique up to sections of
HZ, then ν ∈ H0(T,J m

h ) is a torsion section of J .

Proof: Let ν̃ be a flat local lifting of ν in an open neighbourhood of t0 ∈ T .
We have to show that ν̃(t0) ∈ H2m−1(X0,Q). To this end we take a loop
γ : [0, 1] → T based at t0 and cover it by simply connected open sets Uα

(α = 1, . . . , k) such that ν has a flat lifting να on Uα. For all α, β ∈
{1, . . . , k} we have να − νβ = λαβ for some λαβ ∈ Γ(Uα ∩ Uβ, HZ); hence
we can modify ν2 by λ12 to obtain ν1 = ν2 on U1 ∩ U2. Proceeding in this
way on U2 ∩ U3, . . . , Uk−1 ∩ Uk, we find a new flat lifting ν̂ of ν in γ(1). Let
ρ : π1(T, t0) → AutH2m−1(X0,C) be the monodromy representation. By
definition we have

ρ(γ)(ν̃(t0)) − ν̃(t0) = ν̂(t0) − ν̃(t0),
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and by assumption this element belongs to H2m−1(X0,Z).

Claim: If η ∈ H2m−1(X0,C) and ρ(γ)(η) − η ∈ H2m−1(X0,Z) for all γ ∈
π1(T, t0), then η ∈ H2m−1(X0,Q).

Note that the proof will be finished if we verify this Claim. To this end,
we view X0 as a hyperplane section of a smooth complete intersection Y0 ⊂
P2m+r+1 of dimension 2m and multidegree (d0, . . . , dr). Set L = OY (1). The
linear system |L| corresponds to a projective linear subspace of PH0(Pn, E).
Let ∆L ⊂ |L| be the discriminant locus, and define UL = |L| \ ∆L. It is
known that ∆L ⊂ |L| is an irreducible hypersurface (cf. [B-S, Lemma 1.6.5]).
Choose a Lefschetz pencil P1 ⊂ |L| of hyperplane sections of Y0 that passes
through the point 0 ∈ |L|, and denote the discriminant locus in PH0(Pn, E)
by ∆E . As ∆L = ∆E ∩ |L|, it follows that P1 ∩∆E = P1 ∩∆L = {t1, . . . , tk}
is a finite set of points. The fundamental group of UL ∩P1 = P1 \ {t1, . . . , tk}
has standard generators γi winding once around ti. Let δi ∈ H2m−1(X0,Z)
be the vanishing cocycle associated to γi. Since g∗π1(T, t0) ⊂ π1(U, 0) has
finite index, N say, we have γN

i = g∗γ̃i for i = 1, . . . , k. According to the
Picard–Lefschetz formula, the action of γ̃i via the monodromy representation
is given by

ρ(γ̃i)(η) = η ±N〈η, δi〉δi.

Hence we find that ρ(γ̃i)(η) − η = ±N〈η, δi〉δi ∈ H2m−1(X0,Z) for i =
1, . . . , k. Thus 〈η, δi〉 ∈ Q for i = 1, . . . , k. The pairing

〈 , 〉 : H2m−1(X0,Q) ×H2m−1(X0,Q) → Q

is non–degenerate over Q, and induces an isomorphism

H2m−1(X0,Q)
∼

→ Hom(H2m−1(X0,Q),Q))

sending an element α ∈ H2m−1(X0,Q) to 〈α,−〉. As the vanishing cocycles
δ1, . . . , δk generateH2m−1(X0,Q) (see for instance [V3, Lecture 4, 2.3] or [DK,
Exposé XVIII, 6.6.1]), it follows that 〈η, λ〉 ∈ Q for all λ ∈ H2m−1(X0,Q);
hence η ∈ H2m−1(X0,Q). �
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4 Main result

We formulate and prove the main result of this Chapter, which extends the
aforementioned theorem of Green–Voisin to the case of complete intersections
in projective space.

Theorem 4.1. Let X = V (d0, . . . , dr) ⊂ P2m+r be a smooth complete in-
tersection of odd dimension 2m − 1 (m ≥ 2) and multidegree (d0, . . . , dr)
(d0 ≥ . . . ≥ dr, di ≥ 2 for i = 0, . . . , r). If X is very general, then the image
of the Abel–Jacobi map

ψX : CHm
hom(X) → Jm(X)

is contained in the torsion points of Jm(X), unless we are in one of the
following cases:

(i) (r = 0) X = V (d) ⊂ P4 (3 ≤ d ≤ 5), X = V (3) ⊂ P6, X = V (3) ⊂ P8.

(ii) (r = 1) X = V (3, 3) ⊂ P5.

(iii) (r = 1) X = V (d, 2) ⊂ P2m+1, d ≥ 2, m ≥ 2.

(iv) (r = 2) X = V (d, 2, 2) ⊂ P2m+2, d ≥ 2, m ≥ 2.

(v) (r = 3) X = V (2, 2, 2, 2) ⊂ P2m+3, m ≥ 2.

Proof: We have seen that if X0 = V (d0, . . . , dr) ⊂ P2m+r is a very general
complete intersection, every cycle Z0 ∈ Zm

hom(X0) can be spread out to a
relative cycle ZT ∈ Zm

hom(XT/T ) after taking a finite étale covering T → U
of the parameter space. If the conditions (1) and (2) of Corollary 3.8 are
satisfied, the normal function ν ∈ H0(T,J m

h ) associated to ZT is torsion by
Lemmas 3.9 and 3.10. Note that this is the case if

(m+ r − 1)dr ≥ 2m+ r + 2 = 2(m+ r − 1) + 4 − r,

that is, if

dr ≥ 2 +
4 − r

m+ r − 1
.

For r = 0 this condition is

d0 ≥ 2 +
4

m− 1
.
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This is the result for hypersurfaces of odd degree in projective space obtained
by Green and Voisin. The only exceptions are the ones listed in (i); see [G2].
Note that the Abel–Jacobi map is trivial for quadric hypersurfaces, since
their intermediate Jacobians vanish.

For r ≥ 1, m ≥ 2 we have 4−r
m+r−1

≤ 2. Therefore we are done if dr ≥ 4,
and it remains to check the cases dr = 2 and dr = 3.

Case 1. dr = 2

(1) d0 + . . .+ dr−1 + 2m− 2 ≥ 2m+ r + 2

(2) d1 + . . .+ dr−1 + 2m ≥ 2m+ r + 1.

Since di ≥ 2 for i = 0, . . . , r, condition (1) is always satisfied if r ≥ 4;
condition (2) is always satisfied if r ≥ 3. We check the cases r = 1, r = 2
and r = 3 separately:

∗ r = 1
If (d0, d1) = (d, 2), then the condition (1) is satisfied if d0 ≥ 5, but (2) is

never satisfied.

∗ r = 2

(1) d0 + d1 ≥ 6

(2) d1 ≥ 3.

For (d0, d1, d2) = (d, 2, 2), d ≥ 2, the condition (2) is never satisfied. If
d1 ≥ 3, then (1) and (2) are satisfied.

∗ r = 3

(1) d0 + d1 + d2 ≥ 7

(2) d1 + d2 ≥ 4.

We see that condition (2) is always satisfied; condition (1) is satisfied unless
(d0, d1, d2, d3) = (2, 2, 2, 2).

Case 2. dr = 3

(1) d0 + . . .+ dr−1 + 3m− 3 ≥ 2m+ r + 2

20



(2) d1 + . . .+ dr−1 + 3m ≥ 2m+ r + 1.

As in this case di ≥ dr = 3 for i = 0, . . . , r, condition (1) is satisfied if
m + 2r ≥ 5 and condition (2) is satisfied if m + 2r ≥ 4. Hence (1) and (2)
are satisfied if m ≥ 2 and r ≥ 2. The only remaining case is m = 2, r = 1:

(1) d0 + d1 ≥ 7

(2) 2d1 ≥ 6.

Both conditions are satisfied unless (d0, d1) = (3, 3). �

Remark 4.2. Let us consider the exceptional cases (i)–(v):

(i) The cubic and quartic threefold are Fano threefolds that contain a
positive–dimensional family F of lines; in both cases, the Abel–Jacobi
map Alb(F ) → J2(X) is surjective (cf. [Ty], [C-G] and [B-M]). The
cubic fivefold X = V (3) ⊂ P6 contains a family F of 2–planes; Collino
[Co] showed that Alb(F )

∼

→ J3(X). For a very general quintic threefold
X = V (5) ⊂ P4, the image of the Abel–Jacobi map is non–torsion; see
[Gr] and [C-C]. Clemens [C] showed that the image of the Abel–Jacobi
map is not even finitely generated; his proof is based on monodromy
arguments. Voisin [V2] has given a different proof of this statement
using infinitesimal methods. The image of the Abel–Jacobi map is also
not finitely generated for a very general cubic sevenfoldX = V (3) ⊂ P8;
see [A-C].

(ii) For a very general intersection of two cubics X = V (3, 3) ⊂ P5, the
image of ψX is not finitely generated [Ba-MuSt].

(iii) This case is covered by the following result:

Theorem. Let Y be a smooth projective variety of even dimension
2m, and let L be a very ample line bundle on Y . Suppose that X ∈ |L|
is a general smooth divisor. If

(i) H2m−1
var (X) 6= 0

(ii) im clY,Q ∩H2m
pr (Y,Q) 6= 0
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then imψX,Q 6= 0.

This result is essentially due to Griffiths, N. Katz and Zucker; see [DK,
Exposé XVIII, Cor. 5.8.7]. Let U ⊂ |L| be the smooth part, and let VQ

be the local system of variable cohomology. Let P1 ⊂ |L| be a Lefschetz
pencil, with smooth part U0 = U ∩ P1. Katz shows that there is an
injective map

H2m
pr (Y,Q) → H1(U0, VQ).

As this map sends the class [Z] to the cohomological invariant ∂νZ

of the associated normal function νZ (see [Z, Prop. 3.9]), the desired
statement follows. Note that we can replace (ii) by Hdgm

pr(Y )Q 6= 0,
as it is possible to associate a normal function to a primitive Hodge
class on Y (cf. [G3, Lecture 6]). In a similar way one can deduce the
non–vanishing of the infinitesimal invariant δνZ ; see [MuSt].

If Y is a quadric of dimension 2m and X = Y ∩ V (d) is a smooth hy-
persurface section, the conditions of the previous theorem are satisfied
if Z = Z1 −Z2 is the difference of two m–planes that belong to the dif-
ferent rulings of Y (note that X has nontrivial vanishing cohomology;
see [DK, Exposé XI]).

(iv) This case can be handled in the same way as (ii). If Y = V (2, 2) ⊂
P2m+2 is a complete intersection of two quadrics, it is known that Y
contains exactly 4m+1 m–planes; the cohomology classes of the differ-
ences of these m–planes generate H2m

pr (Y,Q). This result is due to Reid
[R], see also [Mer].

(v) For m = 2, it is known that the image of ψX is non–torsion if X is very
general. This follows from a result of Bardelli, and one can handle the
cases where m > 2 by a generalization of his techniques. Details will
appear elsewhere.

Remark 4.3.

(1) The cases (iii) and (iv) mentioned above are the only cases where the
technique of Katz produces non–torsion normal functions, in view of the
cohomological Noether–Lefschetz theorem (see [DK, Exposé XIX]). For
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Calabi–Yau complete intersections and cubic sevenfolds (which can in
some sense be interpreted as the ’mirrors’ of rigid Calabi–Yau threefolds
[A-C]) one uses a similar technique, based on Mark Green’s Lemma (see
[Kim] or [V3, Lecture 3]), which produces a countable union of ’good’
components of the Noether–Lefschetz locus whose union is dense in the
parameter space. For details, see [V2] or [Ba-MuSt].

(2) Let V ⊂ U = PH0(P2m,OP(d)) \ ∆ be a Zariski open subset of the
complement of the discriminant locus for the family of hypersurfaces of
degree d in P2m. If d ≥ 2, then there are no nonzero normal functions
that are defined over V . This is clear if d = 2; for d ≥ 3 it is proved in
[G-H, §3], using a result of N. Katz on cohomology with values in the
local system of vanishing cohomology over a Lefschetz pencil (see [DK,
Exposé XVIII, Th. 5.7]) and results of Zucker on normal functions
defined over Lefschetz pencils (see [Z, Thm. (4.17) and Cor. (4.52)]).
A similar argument applies in the case of complete intersections X =
V (d0, . . . , dr) such that di ≥ 2 for all i = 0, . . . , r.

Acknowledgment. I would like to thank Professors J.P. Murre and C.
Peters for their help and encouragement.
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Clemens sur les cycles d’une quintique générale de P4, J. Alg.
Geom. 1 (1992), 157–174.

[V3] C. Voisin, Transcendental methods in the study of algebraic cy-
cles, in: Algebraic cycles and Hodge theory, Lecture Notes in
Math. 1594, Springer–Verlag (1994).

[Z] S. Zucker, Generalized Intermediate Jacobians and the theorem
on normal functions, Inv. Math. 33 (1976), 185–222.

26


